• Title/Summary/Keyword: Reduced data

Search Result 6,434, Processing Time 0.032 seconds

Correlation Test by Reduced-Spread of Fuzzy Variance

  • Kang, Man-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.147-155
    • /
    • 2012
  • We propose some properties for a fuzzy correlation test by reduced-spread fuzzy variance for sample fuzzy data. First, we define the condition of fuzzy data for repeatedly observed data or that which includes error term data. By using the average of spreads for fuzzy numbers, we reduce the spread of fuzzy variance and define the agreement index for the degree of acceptance and rejection. Given a non-normal random fuzzy sample, we have bivariate normal distribution by apply Box-Cox power fuzzy transformation and test the fuzzy correlation for independence between the variables provided by the agreement index.

A Three Steps Data Reduction Model for Healthcare Systems (헬스케어 시스템을 위한 세단계 데이터 축소 모델)

  • Ali, Rahman;Lee, Sungyoung;Chung, Tae Choong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.474-475
    • /
    • 2013
  • In healthcare systems, the accuracy of a classifier for classifying medical diseases depends on a reduced dataset. Key to achieve true classification results is the reduction of data to a set of optimal number of significant features. The initial step towards data reduction is the integration of heterogeneous data sources to a unified reduced dataset which is further reduced by considering the range of values of all the attributes and then finally filtering and dropping out the least significant features from the dataset. This paper proposes a three step data reduction model which plays a vital role in the classification process.

ASVMRT: Materialized View Selection Algorithm in Data Warehouse

  • Yang, Jin-Hyuk;Chung, In-Jeong
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • In order to acquire a precise and quick response to an analytical query, proper selection of the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all relations are considered for selection as materialized views. However, materializing all relations rather than a part results in much worse performance in terms of time and space costs. Therefore, we present an improved algorithm for selection of views to materialize using the clustering method to overcome the problem resulting from conventional view selection algorithms. In the presented algorithm, ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate reduced tables in the data warehouse using clustering based on attribute-values density, and then we consider the combination of reduced tables as materialized views instead of a combination of the original base relations. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs are approximately 1.8 times better than conventional algorithms.

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

Memory Latency Hiding Techniques (메모리 지연을 감추는 기법들)

  • Ki, An-Do
    • Electronics and Telecommunications Trends
    • /
    • v.13 no.3 s.51
    • /
    • pp.61-70
    • /
    • 1998
  • The obvious way to make a computer system more powerful is to make the processor as fast as possible. Furthermore, adopting a large number of such fast processors would be the next step. This multiprocessor system could be useful only if it distributes workload uniformly and if its processors are fully utilized. To achieve a higher processor utilization, memory access latency must be reduced as much as possible and even more the remaining latency must be hidden. The actual latency can be reduced by using fast logic and the effective latency can be reduced by using cache. This article discusses what the memory latency problem is, how serious it is by presenting analytical and simulation results, and existing techniques for coping with it; such as write-buffer, relaxed consistency model, multi-threading, data locality optimization, data forwarding, and data prefetching.

THE AUTOMATIC CALIBRATION OF KOREAN VLBI NETWORK DATA

  • HODGSON, JEFFREY A.;LEE, SANG-SUNG;ZHAO, GUANG-YAO;ALGABA, JUAN-CARLOS;YUN, YOUNGJOO;JUNG, TAEHYUN;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • The calibration of Very Long Baseline Interferometry (VLBI) data has long been a time consuming process. The Korean VLBI Network (KVN) is a simple array consisting of three identical antennas. Because four frequencies are observed simultaneously, phase solutions can be transferred from lower frequencies to higher frequencies in order to improve phase coherence and hence sensitivity at higher frequencies. Due to the homogeneous nature of the array, the KVN is also well suited for automatic calibration. In this paper we describe the automatic calibration of single-polarisation KVN data using the KVN Pipeline and comparing the results against VLBI data that has been manually reduced. We find that the pipelined data using phase transfer produces better results than a manually reduced dataset not using the phase transfer. Additionally we compared the pipeline results with a manually reduced phase-transferred dataset and found the results to be identical.

A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device (모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구)

  • Lee, Hak Min;Um, Jong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.

A Feature Selection Technique based on Distributional Differences

  • Kim, Sung-Dong
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This paper presents a feature selection technique based on distributional differences for efficient machine learning. Initial training data consists of data including many features and a target value. We classified them into positive and negative data based on the target value. We then divided the range of the feature values into 10 intervals and calculated the distribution of the intervals in each positive and negative data. Then, we selected the features and the intervals of the features for which the distributional differences are over a certain threshold. Using the selected intervals and features, we could obtain the reduced training data. In the experiments, we will show that the reduced training data can reduce the training time of the neural network by about 40%, and we can obtain more profit on simulated stock trading using the trained functions as well.

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF