• Title/Summary/Keyword: Reduced Pressure Evaporation

Search Result 51, Processing Time 0.032 seconds

Electrical Properties of Organic Light-emitting Diodes Using TCNQ Molecules (TCNQ 분자를 이용한 유기 발광 소자의 전기적 특성)

  • Na, Su-Hwan;Kim, Tae-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.896-900
    • /
    • 2010
  • Electrical properties of organic light-emitting diodes were studied in a device with 7,7,8,8-tetracyano-quinodimethane (TCNQ) to see how the TCNQ affects on the device performance. Since the TCNQ has a high electron affinity, it is used for a charge-transport and injection layer. We have made a reference device in a structure of ITO(170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm). And two types of devices were manufactured. One type of device is the one made by doping 5 and 10 vol% of TCNQ to N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) layer. And the other type is the one made with TCNQ layer inserted in between the ITO anode and TPD organic layer. Organic layers were formed by thermal evaporation at a pressure of $10^{-6}$ torr. It was found that for the TCNQ doped devices, turn-on voltage of the device was reduced by about 20 % and the current efficiency was improved by about three times near 6 V. And for devices with TCNQ layer inserted in between the ITO anode and TPD layer, it was found that the current efficiency was improved by more than three times even though there was not much change in turn-on voltage.

Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization

  • Lee, Joongseok;Han, Joon Soo;Yoo, Bok Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3805-3810
    • /
    • 2013
  • The surface modification of silica particles (SPs) was systemically conducted by the treatment of 0.1-10 wt % phenylsilanetriol (PST) on the basis of SPs used through two step processes: 1) the PST coating of SPs via evaporation under reduced pressure and 2) their thermal condensation leading to Si-O-Si bond formation via heating at $130^{\circ}C$. The evaluation of the modified SPs was conducted by the simple floating test on water and the measurement of the contact angle (CA) of water droplet on the 2-dimensional layer of modified SPs on slide glass. When PST was used about 2 wt % or above on the basis of SPs (about average size: 50 nm) used, the modified SPs were fully floated on the water and all dispersed into upper organic solvent layer after a shaking with the mixture of the water and benzene, indicating that the modified SPs have hydrophobic properties. The modified SPs were characterized by $^{29}Si$ MAS NMR and physicochemical properties including SEM, TEM, BET, adsorption/desorption isotherms, etc. were measured and compared each other in details. This research demonstrates that the organosilanetriol is a good modifier applicable for the surface modification of inorganic oxide particles using a low amount of modifier on the basis of oxide particles used.

Efficiency Improvement of Organic Light-emitting Diodes depending on the Thickness Variation of BCP using Electron Transport Layer (전자 수송층 BCP의 두께변환에 따른 유기발광소자 효율 개선)

  • Kim, Weon-Jong;Shin, Hyun-Teak;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In the devices structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) /tris (8-hydroxyquinoline)aluminum$(Alq_3)$electron-transport-layer(ETL)(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP))/Al, we have studied the efficiency improvement of organic light-emitting diodes depending on the thickness variation of BCP using electron transport layer. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm under a base pressure of $5{\times}10^{-6}$ Torr using at thermal evaporation, respectively. The TPD and $Alq_3$ layer were evaporated to be deposition rate of $2.5{\AA}/s$. And the BCP was evaporated to be a4 a deposition of $1.0{\AA}/s$. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when thickness of BCP is 5 nm. Also, operating voltage is lowest. Compared to the ones from the devices without BCP layer, the luminous efficiency and the external quantum efficiency were improved by a factor of four hundred ninty and five hundred, respectively. And operating voltage is reduced to about 2 V.

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Antifungal Activity of Extract of Common Purslane (Portulaca oleracea L.) (쇠비름 즙액(汁液)의 항균작용(抗菌作用))

  • Park, Jong Seong;Kwon, Jin Sook;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.190-193
    • /
    • 1984
  • Extracts of common purslane(Portulaca oleracea L.) showed to possess some antifungal substances which inhibited the mycelial growth of the phytopathogenic fungi tested;Valsa mali, Alternaria kikuchiana and Pyricularia oryzae. These antifungal substances were found to be soluble in methanol and were regarded as kinds of lipid. In order to isolate the antifungal substances, the extracts of common purslane were concentrated by evaporation under reduced pressure and extracted with methanol The methanol solution was subjected to silica gel-florisil column and divided into lipid and non-lipid fractions. Lipid fractions only showed antifungal activity against the fungi tested. The effective substances contained in the extracts of common purslane inhibited not only the mycelial growth but also the spore germination of the fungi.

  • PDF

Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles (습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.

A Study of Glutathione S-transferase Inhibitors obtained from Allium cepa var. cepa Extract (양파 추출물에서의 글루타티온 전달효소 활성 저해제에 관한 연구)

  • Lee, Kwang-Soo;Park, Kyung-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.725-730
    • /
    • 2013
  • In this study, an ethanol extract being obtained from Allium cepa var. cepa examins the inhibitory effects on the glutathione S-transferase and the separation had been done by silica-gel column chromatography using various eluents, such as ethyl acetate, methanol, and 50% methanol. A volume of column fraction was 50ml and evaporation has been performde by the rotary evaporator under reduced pressure. Each fraction is being examined by thin layer chromatography and the UV spectrum at 365 nm was used to investigate separation patterns of spots on thin layer chromatography. When the eluent was changed, the spot patterns showed another different pattern on thin layer chromatography, so on. Fractions showing similar pattern are combined and eventually, three fractions are obtained. Each fraction is testified to examine the inhibition effects on glutathione S-transferase. All of these showed inhibition effects on glutathione S-transferase. The GC-MS shows that each fraction contains more than 2 compounds.

Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter (경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가)

  • Jeong, Seonghun;Park, Sung-Eun;Kim, Min-Jung;Cho, Hyung-Jei;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.

Comparing of 5-Nonylsalicylaldoxime and Salicylaldehyde Characterization Using Magnesium Salt Formylation Process

  • Pouramini, Zeinab;Moradi, Ali
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.357-362
    • /
    • 2012
  • 5-Nonylsalicylaldoxime and salicylaldehyde are two derivatives of phenolic compounds which are very applicable materials in industries. Formerly the formylation of phenolic derivatives were carried out by Rimer-Tiemann method. In this work both of these two materials were synthesized by magnesium meditated formylation technique and their structural characterizations were compared by instrumental analysis technique. In order to achieve a selectively orthoformylated product, the hydroxyl group of nonylphenol (or phenol) was first modified by magnesium methoxide. The nonylphenol magnesium salt was then formylated by paraformaldehyde. The oximation reaction was finally applied to the prepared nonylsalicylaldehyde magnesium salt by liquid extracting via water and acid washing and other extractions. The solvent was finally removed by evaporation under reduced pressure. Some instrumental analysis such as $^1H$-NMR, GC/MS and FT-IR spectra were taken on the product in order to interpret the reaction characterization quantitatively and qualitatively. The formaldehyde and oxime functional groups of two compounds were investigated through $^1H$-NMR and FT-IR spectra and were compared. The yield of methoxilation was very good and the yields of formylation and oximation reactions were about 90%and 85% respectively. The orthoselectivity of formylation reaction were evaluated by comparing of the relevant spectra. The GC/MS spectra also confirmed the obtained results.

Effects of the Decomposition Residue of Compound Additive on Resintering Behavior

  • Kim, H.S.;C.Y. Joung;Kim, S.H.;S.H. Na;Lee, Y.W.;D.S. Sohn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.323-330
    • /
    • 2002
  • Various types of compounds were tested with the aspects of decomposition and formation of residue in a $CO_2$ or 7H$_2$+93$N_2$ atmosphere. The evaporation temperature range of each compound was determined from thermogravimetric curve. Decomposition of dicarbon amide, stearic acid, acrowax and zinc stearate was studied by thermogravimetry in $CO_2$ or in 7H$_2$+93$N_2$ atmosphere. All compounds were decomposed in $CO_2$ atmosphere at lower than 40$0^{\circ}C$, but the residue, ZnO remained for zinc stearate. ZnO did not decompose in $CO_2$ atmosphere up to 130$0^{\circ}C$, but reduced into Zn metal and disappeared in the temperature range of $600^{\circ}C$ to 120$0^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. The effect of residue, which trapped in closed pores of sintered pellet, on the thermal stability was studied using the resintering test at 1$700^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. In the case of oxidative sintered pellet with admixing zinc stearate, the cavity formation accompanied with a density drop after resintering is due to the pressure of the Zn gases trapped in the isolated pores.