• Title/Summary/Keyword: Redifferentiation

Search Result 13, Processing Time 0.02 seconds

Redifferentiation of the Cutaneous Pigment System during the Wound Healing Process in the Goldfish, Carassius auratus (금붕어 (Carassius auratus L.) 상처치유과정중 피부색소체계의 재분화에 관한 연구)

  • Moon, Myung-Jin;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.27 no.1
    • /
    • pp.71-86
    • /
    • 1997
  • The regeneration and differentiation of the cutaneous pigment system in the goldfish, Carassius auratus during the wound healing process were studied with high magnification electron microscope. The cutaneous pigment cells of the normal tissues were composed of three kinds of dermal chromatophores-xanthophores, leucoiphores and melanophores. While xanthophores contain two kinds of pigment granules-pterinosomes and carotenoid vesicles, leucophores and melanophores contain amorphous pigment granules (leucosomes) and oval shaped electron dense melanin pigment granules (melanosomes) respectively. After injury, primary wound healing responses being carried out by migration of epidermal cells and hemocytes spreading over the wound surface at the day of wounding. And at the time of primary wound closure, 5 to 7 days after wounding, rER rich cells-presumably common precursors of dermal chromatophores-immigrated into the wound area. First redifferentiated chromatophores appeared 3 weeks after wounding. Pigment granules of the chromatophores were emerged from the cytoplasmic Golgi complex via rough endoplasmic reticulum. Pinocytotic vesicles which associated with accumulation of pigment material, appeared only at the inner surface of the chromatophores adhering to the rER rich cells, characteristically. The differentiation of each chromatophore in addition to integumental wound repair were accomplished within 4 weeks after wounding at most cases, however the total numbers and densities of these repaired chromatophores still primitive state. Moreover, It has been revealed that complete repair of chromatophores at wounded tissues from burns requirs more than 3 months in normal environment.

  • PDF

REDIFFERENTIATION FROM TISSUE CULTURE AND ISOLATION OF VIABLE PROTOPLASTS IN PANAX GINSENG C.A. MEYER (고려인삼의 조직배양에 의한 기관형성과 원형질체배양에 관한 연구)

  • Choi Kwang-Tae;Yang Deok-Chun;Kim Nam-Won;Ahn In-Ok
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.1-11
    • /
    • 1984
  • Ginseng cotyledon calli were cultured on 1/2MS media supplemented with combination of various growth regulators to induce more embryoids and plantlets in a short period. And tissues of ginseng root and calli were also incubated under various factors or conditions to establish methods for the isolation of viable protoplasts in Panax ginseng C.A. Meyer. The calli derived from cotyledon produced numerous embryoids in 1/2MS media containing 0.5mg/$\ell$ 2,4-D and 0.5mg/$\ell$ kinetin after 2 months' culture. But only shoot formation was less frequent. Further development of these embryoids occurred on 1/2MS medium supplemented with the same concentration of BA and GA. Viable protoplasts were isolated from the root tissue and callus of ginseng. The specific conditions for the isolation of viable protoplasts were required of ginseng materials, root tissue and callus, being processed. For the production of viable protoplasts from 1-year old ginseng root tissue, an enzyme mixture of $2\%$ cellulase 'Ono-zuka' and $0.5\%$ macerozyme, an enzyme solution pH of 5.2 to 5.8, a 7- to 8- hour incubation period at $28{\pm}1^{\circ}C$, and 0.9M mannitol as osmoticum in the cell enzyme mixture were optimum, while the treatments with an enzyme mixture of $2\%$ cellulase 'Onozuka', $2\%$ macerozyme and $1\%$ driselase, and 25-hour incubation period at $28{\pm}1^{\circ}C$, were more efficient for the production of viable protoplasts from ginseng callus.

  • PDF

The effects of proliferation and differentiation on adipocyte 3T3-L1 by prescriptions and herbs of Taeyang-In and Taeum-In (태양인(太陽人), 태음인(太陰人)의 처방(處方)과 약재(藥材)가 지방세포(脂肪細胞)(3T3-L1)의 증식(增殖)·분화억제(分化抑制)에 미치는 영향(影響))

  • Kim, Su-beom;Kho, Byung-hee;Song, Il-byung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.10 no.2
    • /
    • pp.533-564
    • /
    • 1998
  • In order to know the effect of proliferation and differentiation on edipocyte 3T3-L1 by prescriptions and herbs, Taeyangin(太陽人)'s Okapijangcheok-tang(五加皮壯脊湯) Mihudeungsikjangtang Acanthopanacis Cortex(五加皮) Phragmitis Rhizoma(蘆根) and Taeumin(太陰人)'s Taeumjowi-tang(太陰調胃湯) Cheongsimyonja-tang(淸心蓮子湯) Cheongpaesagan-tang(淸肺瀉肝湯) Galkeunbupyong-tang(葛根浮萍湯) Coicis Semen(薏苡仁) Rhei Undulati Rhizoma(大黃) Mori Cortex(桑白皮) Ulmi Cortex(楡根白皮) Holotrichia Vermiculus Kalopanaxii Cortex(海桐皮) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根), were used and had some effects. 1. The proliferation effect of edipocyte 1) At the Taeyangin(太陽人)'s prescriptions and herbs, Okapijangcheok-tang(五加皮壯脊湯) Mihudeungsikjang-tang Acanthopanacis Cortex(五加皮) have a control effect at the boiling water-extract and ethyl alcohol-extract. Phragmitis Rhizoma(蘆根) have a control effect at the ethyl alcohol-extract. 2) At the Taeyangin(太陽人)'s prescriptions and herbs, Taeumjowi-tang(太陰調胃湯) Cheongsimyonja-tang(淸心蓮子湯) Cheongpaesagan-tang(淸肺瀉肝湯) Galkeunbupyong-tang(葛根浮萍湯) have a control effect at the boiling water-extract and ethyl alcohol-extract. Coicis Semen(薏苡仁) Rhei Undulati Rhizoma(大黃) Morl Cortex(桑白皮) Ulmi Cortex(楡根白皮) Kalopanaxii Cortex(海桐皮) · Ephedrae Herba(麻黃) of the boiling water-extract, Holotrichia Vermiculus Kalopanaxii Cortex(海桐皮) of ethyl alcohol-extract have a control effect on edipocytes. Rhei Undulati Rhizoma(大黃) Ulmi Cortex(楡根白皮) Ephedrae Herba(麻黃) of high-density have a cyto-toxicity. 2. The differentiation effect of edipocyte 1) At the Taeyangin(太陽人)'s prescriptions and herbs during the natural differentiation, Phragmitis Rhizoma(蘆根) of the boiling water-extract, Okapijangchek-tang(五加皮壯脊湯) Acanthopanacis Cortex(五加皮) of the ethyl alcohol-extract have a cyto-toxicity on the first-differentiation. 2) At the Taeumin(太陰人)'s prescriptions and herbs during the natural differentiation, Ulmi Cortex (楡根白皮) Kalopanaxii Cortex(海桐皮) of the boiling water-extract have a cyto-toxicity on the first-differentiation. Cheongsimyonja-tang(淸心蓮子湯) Ephedrae Herba(麻黃) of ethyl alcohol-extract have a control effect on the redifferentiation. 3) At the Taeyangin(太陽人)'s prescriptions and herbs on the first-differentiation during the induced differentiation, Acanthopanacis Cortex(五加皮) of ethyl alcohol-extract has a control effect. Okapijangchek-tang(五加皮壯脊湯) Acanthopanacis Cortex(五加皮) Phragmitis Rhizoma(蘆根) of the boiling water-extract have a cyto-toxicity. 4) At the Taeumin(太陰人)'s prescriptions and herbs on the first-differentiation during the induced differentiation, Coicis Semen(薏苡仁) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根) of the boiling water-extract and Ephedrae Herba(麻黃) of the ethyl alcohol-extract have a control effect. Kalopanaxii Cortex(海桐皮) of the boiling water-extract and the ethyl alcohol-extract has a cyto-toxicity. Considering this result, the Taeyangin(太陽人) Taeumin(太陰人)'s prescriptions and herbs have a control effect on edipocytes during the proliferation. Acanthopanacis Cortex(五加皮), Coicis Semen(薏苡仁) Ephedrae Herba(麻黃) Imperatae Rhizoma(白茅根) have a control effect on edipocytes during the induced differentiation. In the future, for treating a obesity need a vivo assay and hope this study to help to know the mechanisms of obesity.

  • PDF