• Title/Summary/Keyword: Red tide index Chlorophyll Algorithm

Search Result 3, Processing Time 0.02 seconds

COMPARISON OF RED TIDE DETECTION BY A NEW RED TIDE INDEX METHOD AND STANDARD BIO-OPTICAL ALGORITHM APPLIED TO SEA WIFS IMAGERY IN OPTICALLY COMPLEX CASE-II WATERS

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.445-449
    • /
    • 2005
  • Various methods to detect the phytoplankton/red tide blooms in the oceanic waters have been developed and tested on satellite ocean color imagery since the last two and half decades, but accurate detection of blooms with these methods remains challenging in optically complex turbid waters, mainly because of the eventual interference of absorbing and scattering properties of dissolved organic and particulate inorganic matters with these methods. The present study introduces a new method called Red tide Index (Rl), providing indices which behave as a good measure of detecting red tide algal blooms in high scattering and absorbing waters of the Korean South Sea and Yellow Sea. The effectiveness of this method in identifying and locating red tides is compared with the standard Ocean Chlorophyll 4 (OC4) bio-optical algorithm applied to SeaWiFS ocean imagery, acquired during two bloom episodes on 27 March 2002 and 28 September 2003. The result revealed that OC4 bio-optical algorithm falsely identifies red tide blooms in areas abundance in colored dissolved organic and particulate inorganic matter constituents associated with coastal areas, estuaries and river mouths, whereas red tide index provides improved capability of detecting, predicting and monitoring of these blooms in both clear and turbid waters.

  • PDF

Study on Characteristics of Harmful Algal Blooms in the South Sea of Korea by using Satellite and In-Situ Data

  • Denny, Widhiyanuriyawan;Kim, Dae-Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.580-585
    • /
    • 2009
  • Harmful Algal Blooms (HABs), caused by Cochlodinium polykrikoides that causative fishery mortality, impact on aquaculture and economic loss appear particularly in summer and fall seasons in the Korean seas. It was studied on characteristics of HABs in the South Sea of Korea by using satellite and in-situ data. The in-situ data encompassed oceanic and meteorological data from July to October 2002-2008 and satellite data from July to October 2002-2006. Chlorophyll concentrations were calculated using Seaviewing Wide Field-of-view Sensor images by an Ocean Color (OC4) algorithm, and HABs were estimated using the Red tide index Chlorophyll Algorithm (RCA). The HAB occurrences were dominant when water temperature was $22.6-28^{\circ}C$ in August. The frequency of the individual numbers during 2002-2008, the HABs more than 1000 cells/ml (alert condition), were 73.57 %. In meteorological data from July to September during 2002-2008, the average precipitation, the mean air temperature, the mean wind speed and direction, and the sunshine were 9.31 mm/day, $24.07^{\circ}C$, 2.34 m/s and easterly, and 1-11 h, respectively. Our results suggest that the upwelling is caused by southwesterly wind in summer season and the Tsushima Warm Current which have influenced on the dispersion and moving of HAB (chlorophyll). In addition, the fresh water from Nakdong River, as the source of nutrients, also influences the occurrence of HABs.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.