• 제목/요약/키워드: Red sword tail (xiphophorus hellieri )

검색결과 3건 처리시간 0.016초

Brachydanio rerio와 Xiphophorus hellieri를 이용한 BPMC, Carbaryl 및 Carbofuran의 단기간 생물농축계수의 측정 (Determination of short-term bioconcentration Factor on BPMC, Carbaryl and Carbofuran in Brachydanio rerio and Xiphophorus hellieri)

  • 민경진;전봉식;차춘근;김근배;조영주;송진욱
    • 한국식품위생안전성학회지
    • /
    • 제13권3호
    • /
    • pp.213-220
    • /
    • 1998
  • Zebrafis(brachydanio rerio), red sword tail(Xiphophorus hellieri)을 이용하여 카르바메이트계 농약인 BPMC, carbaryl 및 carbofuran을 실험 농도 0.05, 0.01, 0.50 ppm 및 각 농약에 대해 측정한 96시간 $LC_{50}$ 농도의 1/100, 1/1000에서 단기간(3일, 5일, 8일) 생물농축계수(Bioconcentration factor (BCF))를 측정하였으며, 아울러 배설 속도 상수(depuration rate constant)를 구하여 다음과 같은 결과를 얻었다. BPMC와 carbaryl의 경우 sebrafish의 체내 농축정도와 BCF 값은 red sword tail보다 적었다. 실험농도가 증가할수록 어류 체내에서의농축 정도는 증가하였고, BCF값도 증가하였다. 실험 농도가 같은 경우, BPMC는 실험기간이 증가 할 수록 어류 체내에서의 농축정도와 BCF는 감소하였으며, 이것은 기간이 늘어나면서 체외로 배출되는 농약의 양이 증가하기 때문이라 생각된다. 그러나, carbaryl의 경우는 실험기간이 같은 경우, zebrafish의 0.50ppm에서는 BCF가, 농도가 높을수록 증가하는 경향과는 달리 BCF가 감소하였다. Carbofuran의 경우, 실험 전 기간동안 zebrafish 체내에서 carbofuran이 검출되지 않았으며, red sword tail의 96시간 LC50의 1/1000과 1/100 농도에서는 검출한계 미만으로 BCF값을 산출할 수 없었으며, 실험농도 0.05와 0.10ppm에서, 실험 기간에 따른 어류체내 농축정도와 BCF값은 BPMC, carbaryl과 같은 경향을 나타내고 있다. 아울러, 이들 농약의 배설속도 상수는 carbofuran, carbaryl, BPMCtns으로 높게 나타났다. Carbofuran의 어류 체내 농축정도와 BCF값이 carbaryl과 BPMC보다 상대적으로 낮은 이유는 carbofuran의 수용성과 배설속도 상수가 이들 농약에 비해 상대적으로 크기 때문이며, 이로 인해 실제 환경 중에서도 생물농축효과가 현저히 작을 것으로 예측된다.

  • PDF

Brachydanio rerio와 Xiphophorus hellieri를 이용한 Dichlorvos, Methidathion 및 Phosalone의 단기간 생물농축계수의 측정 (Detemination of Short-term Bioconcentration Factor on Dichlorvos, Methidathion and Phosalone in Brachydanio rerio and Xiphophorus hellieri)

  • 민경진;전봉식;차춘근;김근배;조영주
    • 한국환경보건학회지
    • /
    • 제24권3호
    • /
    • pp.99-106
    • /
    • 1998
  • This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.

  • PDF

단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이 (Difference in Species of Test Fish on the Determination of Short-term Bioconcentration Factor)

  • 민경진;차춘근;전봉식;김근배
    • 한국환경보건학회지
    • /
    • 제24권1호
    • /
    • pp.24-31
    • /
    • 1998
  • This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

  • PDF