• Title/Summary/Keyword: Red compound

Search Result 345, Processing Time 0.025 seconds

The Luminescent Properties of SrTiO$_3$ :Al, Pr Red Phosphor (Al과 Pr이 첨가된 SrTiO$_3$ 적색 형광체의 발광 특성)

  • 박정규;류호진;박희동;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.478-482
    • /
    • 1999
  • SrTiO3 :Al, Pr phosphor as an oxide compound phosphor is expect to be applied for a field emission display(FED). In this phosphor the excitation spectrum shows a different tendency according to an addition Al3+ and Pr3+ In this excitation spectrum the main peak at 359 nm represent excitation level of Pr3+(1S0longrightarrow1D2 transition) and the absorption characteristic according to Ti/Sr molar ratio is influenced by the structure symmetry. The emission spectrum exhibits the red luminescence with the radiative decay of the 1D2 states(1D2 longrightarrow3H4 transition) The concentration quenching phenomena at 1D2 state shows up as Al3+ and Pr3+ ion concentration increases.

  • PDF

Effects of Red Ginseng Extract on Zearalenone Induced Spermatogenesis Impairment in Rat

  • Cho, Eun-Sang;Ryu, Si-Yun;Jung, Ju-Young;Park, Bae-Keun;Son, Hwa-Young
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.294-300
    • /
    • 2011
  • Zearalenone (ZEA) is a phenolic resorcylic acid lactone compound produced by several species of Fusarium. ZEA has toxic effects in the testes of domestic and laboratory animals. Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has multiple pharmacological effects such as vasorelaxation, anti-thrombosis, anti-hypertension, etc. In this study, we investigated the effects of KRG extract on testicular toxicity induced by ZEA. Rats were treated with 300 mg/kg oral doses of KRG for 4 weeks every other day. The rats were then treated with a single dose of 5 mg/kg ZEA delivered intraperitoneally, whereas control rats received only doses of the vehicle. As a result, germ cell apoptosis induced by ZEA was decreased by KRG pre-treatment. In addition, Fas and Fas-L expression was reduced in rats that received KRG pre-treatment compared to ones treated with ZEA alone. In conclusion, impaired spermatogenesis resulting from ZEA treatment was prevented by KRG through Fas-Fas L modulating.

Simultaneous Quantification of 13 Ginsenosides by LC-MS/MS and its Application in Diverse Ginseng Extracts

  • Jo, Jung Jae;Cho, Pil Joung;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2018
  • Ginseng (Panax ginseng Meyer) has been used as traditional herbal drug in Asian countries. Ginsenosides are major components having pharmacological and biological efficacy like anti-inflammatory, anti-diabetic and anti-tumor effects. To control the quality of the components in diverse ginseng products, we developed a new quantitative method using LC-MS/MS for 13 ginsenosides; Rb1, Rb2, Rc, Rd, Re, Rf, 20(S)-Rh1, 20(S)-Rh2, Rg1, 20(S)-Rg3, F1, F2, and compound K. This method was successfully validated for linearity, precision, and accuracy. This quantification method applied in four representative ginseng products; fresh ginseng powder, white ginseng powder, red ginseng extract powder, and red ginseng extract. Here the amounts of the 13 ginsenosides in the various type of ginseng samples could be analyzed simultaneously and expected to be suitable for quality control of ginseng products.

Comparison of network pharmacology based analysis on White Ginseng and Red Ginseng (인삼(人蔘)과 홍삼(紅蔘)의 네트워크 약리학적 분석 결과 비교)

  • Park, Sohyun;Lee, Byoungho;Jin, Myungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Objectives : Network pharmacology analysis is commonly used to investigate the synergies and potential mechanisms of multiple compounds by analyzing complex, multi-layered networks. We used TCMSP and BATMAN-TCM databases to compare results of network pharmacological analysis between White Ginseng(WG) and Red Ginseng(RG). Methods : WG and RG were compared with components and their target molecules using TCMSP database, and compound-target-pathway/disease networks were compared using BATMAN-TCM database. Results : Through TCMSP, 104 kinds of target molecules were derived from WG and 38 kinds were derived from RG. Using the BATMAN-TCM database, target pathways and diseases were screened, and more target pathways and diseases were screened compared to RG due to the high composition of WG ingredients. Analysis of component-target-pathway/disease network using network analysis tools provided by BATMAN-TCM showed that WG formed more networks than RG. Conclusions : Network pharmacology analysis can be effectively performed using various databases used in system biology research, and although the materials that have been reported in the past can be used efficiently for research on diseases related to targets, the results are unreliable if prior studies are focused on limited or narrow research areas.

Effects of Simulated Acid Rain and Soil Fertilizers on Photosynthetic Rate, wax Content, and Contact Angle of Japanese Red Pine(Pinus densiflora Sieb. et Zucc.) Leaves (인공산성우와 토양시비가 소나무잎의 광합성속도, 왁스 함량 및 접촉각에 미치는 영향)

  • 최기영;이용범;채의석;이경재
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.263-268
    • /
    • 1996
  • This study was conducted for the assessment of the effects of acid rain and soil fertilizers on photosynthetic rate, was content, and contact angle on 5-year seedlings of Japanese red pine (Pinus densiflora Sieb. et Zucc.) leaves. The seedlings were exposed to pH 3.0 (simulated acid rain), pH 6.5 (groung water) and rain (pH around 4.6). The seedlings were also treated with $Ca(OH)_2, Mg(OH)_2, and Ca(OH)_2 + Mg(OH)_2 + C.F.(compound fertilizer)$. Photosynthetic rate, stomatal conductance, was content, contact angle value, and mineral nutrient content of the leaves were measured and the results were as follows: 1. Photosynthetic rate and stomatal conductance of the leaves increased with the increase of pH. Photosynthetic rate and stomatal conductance increased with application of soil fertilizer in the pH 3.0 treatment, but showed no changes in the rain and the pH 6.5. 2. Contact angle value and was content of the leaves did not change with the pH treatment, but increased with the fertilizer treatments. 3. Mineral nutrient contents of the leaves were lowest in the rain treatment and highest in the pH 6.5 treatment. The increase of mineral nutrient contents was observed with the soil fertilizer treatments.

  • PDF

Efficient Synthesis of Biologically Interesting Natural Pyranochalcones from Mallotus Philippensis and Their Unnatural Derivatives

  • Xia, Likai;Lee, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2921-2927
    • /
    • 2011
  • This paper describes efficient synthetic approaches for isolating biologically interesting natural pyranochalcones and their unnatural derivatives from Mallotus Philippensis. The key strategies involve ethylenediamine diacetate-catalyzed benzopyran formation reactions and base-catalyzed aldol reactions.

Red to Red - the Marine Bacterium Hahella chejuensis and its Product Prodigiosin for Mitigation of Harmful Algal Blooms

  • Kim, Doc-Kyu;Kim, Ji-Hyun F.;Yim, Joung-Han;Kwon, Soon-Kyeong;Lee, Choong-Hwan;Lee, Hong-Kum
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1621-1629
    • /
    • 2008
  • Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the $\gamma$-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations ($\sim$l ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.

Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood

  • PRIADI, Trisna;ORFIAN, Gema;CAHYONO, Tekat Dwi;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.315-325
    • /
    • 2020
  • Boron compound had many advantages as wood preservative, but it was prone to leaching. Improving boron preservation was required to extend the service life of fast growing and low durability red jabon (Antochephalus macrophyllus) hardwood. This study aimed to evaluate the dimensional stability, color change and durability of modified red jabon wood by double impregnation with boron and methyl methacrylate (MMA) and heat treatment. Impregnation I used boric acid or borax, and impregnation II used MMA, while heat treatment used temperatures of 90 ℃ or 180 ℃ for 4 hours. The dimensional stability, leachability, water absorption, color change and decay resistance of modified red jabon wood were tested. The results showed that MMA impregnation increased the dimensional stability of red jabon wood, while the leaching and water absorption in the wood significantly reduced. Heating at 180 ℃ caused less water absorption and higher dimensional stability of the wood than that of heating at 90 ℃. Impregnation with boric acid and MMA followed by heating at 90 ℃ resulted in the highest wood ASE, 89.9%. The color change (∆E*) of wood increased significantly after MMA impregnation and heating at 180 ℃. Boric acid impregnation caused more resistant wood than borax impregnation against decay fungi and termites. Impregnation with boric acid and MMA followed with heating at 180 ℃ increased significantly the wood resistance against decay fungi and termites.

Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process (14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

Control Effects of Indole Isolated from Xenorhabdus nematophila K1 on the Diseases of Red Pepper (Xenorhabdus nematophila K1 유래물질 인돌의 고추 병해 방제 효과)

  • Jeon, Mi-Hyeon;Cheon, Won-Su;Kim, Yong-Gyun;Hong, Yong-Pyo;Yi, Young-Keun
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Indole compound is a bacterial metabolite synthesized and released by an entomopathogenic bacterium, Xenorhabdus nematophila K1. The antibiotic activity was evaluated against plant pathogens, such as Phytophthora blight and anthracnose of red pepper. Indole significantly suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight conditions, indole maintained the antifungal activity for at least sixty days. The activity was not affected under the condition of soil-water. When the indole suspension was applied to surface soil before transplanting of red pepper seedlings and was then regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight, anthracnose, soft rot, and black mold) by about 30%. These results suggest that indole can be used to control Phytophthora blight and anthracnose of red pepper.