• Title/Summary/Keyword: Red LED 조사

Search Result 109, Processing Time 0.311 seconds

A Study of the Growth Characteristics of Starry Flounder Platichthys Stellatus in Accordance with the LED Wavelength (LED 파장에 따른 강도다리 Platichthys Stellatus 성장특성)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.495-500
    • /
    • 2015
  • Currently the fish aquaculture industry of Korea is focused on the mass culture of flatfish (Paralichthys olivaceus) and and rockfish (Sebastes schlegeli) with completely controlled culture techniques. Recently, there has been considerable interest in new species development, such as the starry flounder (Platichthys stellatus). The value of starry flounder (Platichthys stellatus) as a raw fish increases with time because it is tasty, light, and bouncy. In this paper, the growth characteristics dependent on the LED wavelengths and the optimal growth conditions of the starry flounder were studied. In these experiments 4 different kinds of LED lighting, configurations were designed and prepared using red, green, blue and white, respectively. The fish aquaculture experiments were conducted over 10 weeks in four fish tanks, each installed with a different color of LED lighting. 10 starry flounders of 13 ~ 17g were placed into each tank. The effects of each color of light on the growth rate of the starry flounders were then examined. As a result, the starry flounders under the green LED lighting showed the highest growth rate, followed by the white, red, and blue LED lighting. Based on these results, a green light provides a suitable breeding environment for the starry flounder.

Effect of LED Light on Primordium Formation, Morphological Properties, Ergosterol Content and Antioxidant Activity of Fruit Body in Pleurotus eryngii (LED광원이 큰느타리버섯 자실체의 발생, 생육, 에르고스테롤 함량 및 항산화활성에 미치는 영향)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Kim, Jeong-Han;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • Light wavelength is the major factor of fruit body development associated with mushroom cultivation, but its wavelength range in Pleurotus eryngii is poorly understood. Using four kinds of light emitting diode (LED) including blue (475 nm), green (525 nm), yellowed (590 nm) and red (660 nm), we investigated to elucidate suitable light wavelength during primordium formation and fruit body development of P. eryngii on bottle cultivation. Primordia formation did not occur in blue light and red light. The morphological properties of fruit body in fluorescent lamp and blue light irradiation were showed thicker and larger pileus than those in other LEDs. However, length of stipe in fluorescent lamp and blue light was shorter than that of other LEDs. The DPPH radical was high in blue light, green light, and yellow light except for red light, and the polyphenol was high in four kinds of LED sources. And ergosterol was the highest in the green light. Thus, the high-quality mushroom production of P. eryngii is possible to green light condition considering productivity and functional materials.

Effect of Light-emitting Diodes (LEDs) and Ventilation on the in vitro Shoot Growth of Eucalyptus pellita (Eucalyptus pellita의 기내(器內) 줄기생장에 미치는 LEDs (Light-emitting diodes) 및 환기처리(換氣處理) 효과)

  • Kim, Ji-Ah;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.716-722
    • /
    • 2006
  • Various light sources including LEDs (Light emitting diodes) affecting on shoot growth was examined using in vitro shoots of E. pellita. Generally, it appeared that ventilation treatment was the most important factor affecting on normal shoot growth, irrespective of irradiation sources. Ventilation resulted in better performance of the cultures under 100% blue LED radiation. These include better shoot growth, more number of leaves, more number of internodes, more number of axillary buds, and heavier dry matters. The highest total chlorophyll content was obtained under both cool-white fluorescent lamps and R5B5 (50% red LED + 50% blue LED). The value was $24.5{\mu}g/g$ and $20.1{\mu}g/g$, respectively. In addition, ventilation resulted in higher carotenoid content in all irradiation sources except 100% red LED radiation. In conclusion, shoot growth of E. pellita could be reached maximum by ventilation under R5B5 (50% red LED + 50% blue LED).

Effect of mycelial culture of cauliflower mushroom (Sparassis crispa) using LED lighting operation (LED 조명처리가 꽃송이버섯의 균사배양에 미치는 효과)

  • Oh, Deuk-Sil;Kim, Hyun-Suk;Shim, Bong-Sub;Wui, An-Jin;Yoon, Byung-Sun;Kim, Kang-Woong;Wang, Seung-Jin
    • Journal of Mushroom
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • As a result of advenced research, Penicillium growth inhibition effect in media of cauliflower mushroom by different LED lighting color inhibited all treated groups, but blue wavelength treatment group was unfitted for culture of cauliflower mushroom due to lots of spore of penicillium. So, to investigated characteristics of mycelial growth of cauliflower mushroom according to different LED wavelength and LED wavelength color. As a results, all red wavelength treatment groups found highest mycelial growth tendency. Thus, mycelial growth investigated different quantity of red lighting wavelength conditions. The quantity of lighting wavelength was low intention, 1.41 ${\mu}mol/m^2S$ treatment group found highest mycelial growth. Effects of mycelial growth by subculture found difference of statistical in one time to carry out a subculture treatment group. Mycelial growth by different quantity of LED lighting in different media composition of wood chip media indicated highest trend in the Korean pine treatment groups. To cultured treatment group for 84th days found difference of statistical, when a quantity of LED lighting red wavelength 2.11 ${\mu}mol/m^2S$ treated in wood chip of the Korean pine media. In conclusion, good culture condition of cauliflower mushroom estimated quantity of red lighting wavelength 2.11 ${\mu}mol/m^2S$ in wood chip media of the Korean pine for 84th days.

Effects of Limiting Factors on Cultivation of Chlorella Sp. under Red Light Emitting Diode: Light Intensity, Blowing of Air or Carbon Dioxide (적색 발광다이오드(Light Emitting Diode)를 이용한 클로렐라 배양에 미치는 영향인자 분석: 빛세기, 공기 및 이산화탄소 주입)

  • Choi, Boram;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • The purpose of this study was to determine optimum condition for the cultivation of Chlorella sp. FC-21 using red light emitting diodes (LED). Specific growth rate and cell concentration were measured for the reactors at the illuminations of different light intensity of red LED. Under the illumination of red LED, specific growth rate increased as light intensity increased but cell concentrations decreased. To determine beneficial effect of aeration to cell cultivation, micro-air bubbles were aerated at 0.7 vvm in the reactor at the illumination of red LED. Two and ten times greater specific growth rate and cell concentration were obtained when aeration was applied. In case of blowing of carbon dioxide, pH of culture medium decreased below to pH 3, which resulted in decreases of cell concentration. From this study, we found that red LED with aeration were the most appropriate light source for the cultivation of Chlorella sp. FC-21.

Effects of Selective Light Sources on Seedling Quality of Tomato and Cucumber in Closed Nursery System (폐쇄형 육묘시설 내에서 몇 가지 광원이 토마토와 오이의 묘소질에 미치는 영향)

  • Um, Yeong-Cheol;Jang, Yoon-Ah;Lee, Jun-Gu;Kim, Seung-Yu;Cheong, Seung-Ryong;Oh, Sang-Seok;Cha, Seon-Hwa;Hong, Seong-Chang
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2009
  • To produce uniform seedlings of tomato and cucumber with inexpensive way, their seedling quality by different light sources was investigated. The raising of seedling was performed by red LED (light emitting diodes), blue LED, red-blue mixed LED or fluorescent light with a fixed PPF(photosynthetic proton flux) level, about $40{\sim}60{\mu}mol{\cdot}m^{-2}{\cdot}sec^{-1}$. In the both tomato and cucumber, the rapid extension of hypocotyledonary axis was observed in Blue LED than fluorescent light, but opposite result was found in Red and mixed LED. During the nursery period of tomato and cucumber, the fresh weight was the highest in Red LED as 74% increasement in tomato and 74% in cucumber. In the case of seedling quality after the tomato nursery, there was no difference in the positions of 1st flower cluster and the number of bearing-flower per flower cluster by each light source. In case of cucumber, until 20th node, the setting ratio of female flower was higher in LED than fluorescent treatment, and also more healthy fruit setting was found in LED. Therefore, we assume that the Red or mixed (Red 2 + Blue 1) LED is more favorable to produce high quality tomato and cucumber seedlings in closed nursery facility.

Effect of LEDs (Light Emitting Diodes) Irradiation on Growth of Paprika (Capsicum annuum 'Cupra') (LED 보광이 파프리카(Capsicum annuum 'Cupra') 생육에 미치는 영향)

  • An, Chul-Geon;Hwang, Yeon-Hyeon;An, Jae-Uk;Yoon, Hae-Suk;Chang, Young-Ho;Shon, Gil-Man;Hwang, Seung-Jae
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to investigate the effect of different light emitting diode (LED) irradiation on the growth of paprika (Capsicum annuum 'Cupra'). The plants were irradiated by red (660 nm), blue (460 nm) and red + blue (4 : 1) light emitting diodes above 50 cm for 5 hours after sunset. Photosynthetic photon flux (PPF) irradiated by red, blue and red + blue LED were $79{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $102{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ respectively. Leaf temperature of paprika grown under blue LED irradiation was the highest of $18.6^{\circ}C$. Fruit temperature was the highest under in the control (no irradiation) but it was lower than leaf temperature. There was influence of LED irradiation on the paprika plants height; under blue irradiation the plant height was the shortest, while under in the control plant height was the highest. The leaf size of under different LED irradiation was bigger than that of in the control. Mean fruit weight under different LED irradiation was significantly increased; however number of fruits and marketable yield per plant were significantly decreased as compared to the control.

Inactivation of Bacterial Pathogens by Irradiation of Red, Green, Blue and Combined Light-Emitting Diode (LED) (적색, 초록, 청색 및 혼합광 LED 조사의 식중독균 저해 효과)

  • Moon, Jin Seok;Oh, Myung-Min;Joo, Woo Ha;Han, Nam Soo
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.428-432
    • /
    • 2013
  • The antimicrobial properties of Light-Emitting Diode (LED) are an area of increasing interest. The aim of this study was to evaluate the bactericidal effects of blue (peak at 456 nm), green (peak at 518 nm), red (peak at 654 nm) and blue-green combined (blue 456 nm : green 558 nm = 69:31) LED irradiation to pathogenic bacteria. For this, LED equipment providing power density of $10mW/cm^2$ was installed and plates were exposed to 0.9 or $3.0mW/cm^2$ to irradiate bacteria with 3.2 to $259.2mW/cm^2$ of energy density. As a result, blue and combined LED have shown bactericidal effects on Escherichia coli KCTC 1467 and Listeria monocytogenes ATCC 19115 after irradiation of $3.0mW/cm^2$ for 2 and 4 hr, respectively. Staphylococcus aureus KCTC 1916 was inhibited at 518 nm green LED irradiation. However, red LED irradiation showed no inhibitory effect to the other tested strains. Light technology that utilizes the bactericidal properties of blue (at 456 nm) and blue-green(blue 456 nm : green 558 nm = 69:31) combined LED may have potential applications in the food industry sector.

The Effects of the Light Quality of a Light Emitting Diode (LED) on the Phosphate Uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele (담녹조강 Tetraselmis suecica와 Tetraselmis tetrathele의 인산염 흡수에 미치는 발광다이오드 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2019
  • This study was conducted to investigate the effects of the light quality of a Light Emitting Diode (LED) on the phosphate uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue LED (max = 450 nm), a yellow LED (max = 590 nm), a red LED (max = 630 nm) and a fluorescent lamp (control) at $100{\mu}mol\;m^{-2}\;s^{-1}$. The maximum uptake rates (${\rho}_{max}$) of T. suecica and T. tetrathele under the red LED were $6.35pmol\;cell^{-1}\;hr^{-1}$ and $9.85pmol\;cell^{-1}\;hr^{-1}$, respectively. The half saturation constants (Ks) of two species were $9.43{\mu}M$ and $21.2{\mu}M$, respectively. The phosphate affinity of the two species under the red LED was higher than that of other wavelengths. Thus, the optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would be red LEDs because of the high growth rate shown, regardless of relatively low nutrient conditions.

Applications of Light-emitting Properties and Functional Selective-wave Lightings of LED Lamp (LED 램프의 발광 특성과 선택파장 기능성 응용)

  • Soh, Dea-Wha;Hong, Sang-Jeen;Park, Jong-Dae;Hah, Tae-Min;Kim, Ji-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.856-859
    • /
    • 2012
  • In order to cultivate vegetables in plastic greenhouse or housing facilities it was investigated properties of radiation and functions of LED lamp and proposed application possibility. Against presently existing method of obtaining blue and red colored wave lights needed to plants growing, it was used white LED and red LED to investigate growing conditions as well as brightness and color sense with working condition. And also it was presented lighting system of selective wave functions to promote plant growth.

  • PDF