• Title/Summary/Keyword: Recycling of Resources

Search Result 3,492, Processing Time 0.025 seconds

Recycling Industries of Urban Mine Resources in China (중국(中國)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.3-14
    • /
    • 2012
  • In order to review the recycling status of urban mine resources in China, recycling of ELV(End of Life Vehicles), E-waste(WEEE) and nonferrous metals were surveyed. Number of the sales volume of the new vehicles were over more than ten million and number of discharge vehicles are increasing now. However, recycling system has not been managed smoothly in China. Though usage of home appliances in urban is similar with advanced countries, there are significant differences in rural community. In the other hand, China is the country with the largest E-waste import in the world. Production and consumption of the nonferrous metals are increasing year by year in China, but recycling of metals is not enough.

Current Status for Resources Recycling in Korea (자원리싸이클링의 현황과 전망)

  • Oh Jae-Hyun;Kim Sung-Don;Kim Joon-Soo
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.3-9
    • /
    • 2003
  • In order to prospect current recycling status in Korea, legislative system and policies relating to recycling, wastes generation and recycling rate were reviewed. Approximately 260,400 ton/day of wastes was generated in 2001. 48,400 ton/day of household waste and 212,000 ton/day of industrial waste. During the last ten years, waste management laws such as waste disposal law, recycling law and environment friendly industry law were prepared. In this article, concerning over waste generation and recycling, recycling law, Extended Producer Responsibility System and the problems and technological developments associated with recycling were summarized.

Urban Mine Resources and Metal Recycling in Korea (한국(韓國)의 도시광산(都市鑛山)(사용후제품) 자원(資源)과 금속재자원화(金屬再資源化))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.3-18
    • /
    • 2011
  • In order to review the recycling status of urban mine resources in Korea, metal consumption, metal stock reserves and metal scraps and wastes such as iron scrap, end of life vehicles(ELV), E-waste were surveyed. In making up the list of the metal consumption, the statistical data from the Korea Non-Ferrous Association, the Korea Iron and Steel Association, the HS code of Korea Custom Service, the symposium and the related companies were collected. Finally, "Principle uses and recycling potential of metals in the periodic table" by T.E.Graedel was introduced. This paper suggested the key point for development of urban mine resources.

Urban Mine Resources and Metals Recycling Industries in Japan (일본(日本)의 도시광산(都市鑛山)(사용후제품) 자원(資源)과 금속(金屬) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.11-26
    • /
    • 2010
  • In order to review the recycling status of urban mine resources in Japan, metal consumption, metal recycling rate and metal recycling industry such as iron scrap, end of life vehiclcs(ELV), waste home appliances and spent IT equipments were surveyed. Japan took rank of top class in the world on the metal consumption and urban mine stock reserve. Metal recycling industries in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. On the other hand, the technologies for recycling of rare metals are being developed now. Recycling rate of EL V, waste home appliances and personal computer are higher than the guidelines of the legislative standard.

Improvement of ELV Recycling Technology - Focused on achievement of ELV recycling rate 95% - (자동차 재활용의 진보 - 자동차 재활용율 95%의 탐색 -)

  • Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 2014
  • In order to survey the numerical achievement of ELV recycling rate 95%, the definition of ELV recycling rate, material components of the automobile, improvement of ELV dismantling technology and status of ASR recycling were reviewed. On the other hand, field survey in details for dismantling works were conducted at Incheon Junkyard and H Junkyard. Although material recycling rate has been approaching 94% in dismantling step, status of ASR recycling is very unstable due to a ban of ASR recycling at cement kiln. It is clear that ASR recycling acts as a bottle neck in the ELV recycling. Therefore, it is important energy recycling of ASR should be enlarged to achieve ELV recycling rate 95%.

Technological Modules for the Recycling of Urban Mines and Non-Ferrous Smelting Processes in Korea (도시광산(都市鑛山) 재자원화(再資源化)기술의 모듈과 한국(韓國)의 비철제련(非鐵製鍊) 프로세스)

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.3-16
    • /
    • 2012
  • In order to review the technological modulus of the recycling of urban mine resources and non-ferrous smelting process in Korea, key point of recycling process, physical separation, non-ferrous smelting process, unit operation for the recycling technology, recycling process of LS-Nikko Copper and Korea Zinc were studied. Finally, metal recycling processes of the typical non-ferrous smelters in Japan such sa DOWA Holdings and JX Holdings were compared with those of LS-Nikko Copper and Korea Zinc.

Disposal Behaviors of College Students in Recycling Resources (대학생들의 재활용자원 분리배출행동에 관한 연구)

  • Bu, Mar-Sook;Kim, Jeong-Sook
    • Journal of the Korean Home Economics Association
    • /
    • v.44 no.4 s.218
    • /
    • pp.145-157
    • /
    • 2006
  • The purpose this study was to analyze the factors related to the disposal behavior of college students in recycling resources. Recycling resources were classified into four categories: paper, glass, cans and plastic. The data used this study were collected through questionnaire on 420 college students living in Jeju island. The data were analyzed by using SPSS WIN program and the methods of frequency, average, standard deviation, percentage, internal consistency method, t-test, one-way ANOVA, and Scheffe's multiple range tests. The study results can be summarized as follows. Disposal behavior of paper was influenced by pocket money, of glass by sex and housing type, and of cans by housing type. Mother's education level was related to the disposal behavior of college students in recycling resources. In addition, the results showed that environment-friendly conscious and purchasing behaviors affected the disposal behavior of college students in recycling the resources of paper, glass, cans and plastic. The environment-friendly consciousness of college students was the most influential factor in the disposal behavior in recycling resources.