• Title/Summary/Keyword: Recycling industries

Search Result 145, Processing Time 0.025 seconds

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

Trends in Recovering Dissolved Boron from Wastewater and Seawater (폐수와 해수로부터 용존 붕소를 회수하는 연구동향)

  • Jung, Sungsu;Kim, Myung-Jin
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.3-10
    • /
    • 2016
  • A lot of researches have been carried out on the recovery of resources from the seawater all over the world. The boron concentration in seawater is low about at 4.5ppm, but considering the volume of seawater, the total weight of dissolved boron amounts to about 5.4 trillion tons. The boron is an essential resource in about 300 kinds of industries. Korea has imported all of the boron and spent more than 700 billion won each year. In this article, we introduce the domestic and international research trends and technologies for removing or recovering the boron from wastewater and seawater. Most of the researches have been conducted to remove the boron from the desalination process, and to recover the boron mainly from wastewater and brine. The technique for the recovery of the dissolved boron includes the ion exchange, which is the most representative, the adsorption membrane filtration (AMF), solvent extraction, and so on.

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

Leaching behavior of rhenium and molybdenum from molybdenite roasting dust in NaOH solutions (휘수연석(輝水鉛石)의 배소(焙燒) 중 발생한 분경(粉慶)으로부터 NaOH에 의한 Rhenium과 Molybdenum의 침출(浸出))

  • Kim, Young-Uk;Kang, Jin-Gu;Sohn, Jeong-Soo;Cho, Bong-Gyu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • The demand for rhenium has considerably increased recently owing to the large-scale consumption in industries and the price of rhenium has increased owing to the lack of supply and its availability. The dust from the roasting of molybdenite was employed to investigate the leaching behavior of rhenium and molybdenum. Leaching experiments were done by varying optimum parameters, such as reaction time, NaOH concentration and leaching temperature. The optimum leaching condition was found to be $4\;mol{\cdot}L^{-1}$ NaOH, 2 hours leaching time, $100\;g{\cdot}L^{-1}$ solid/liquid ratio, $80^{\circ}C$ temperature, and 250 rpm. At this condition, leaching percentage of rhenium and molybdenum was 86.1% and 88.6%, respectively.

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF

Evaluation of Rare Earths viewed from the Occupational Health (산업보건 측면에서의 희토류 건강영향 평가)

  • Shin, Seo-Ho;Rim, Kyung-Taek;Kim, Jong-Choon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.237-252
    • /
    • 2016
  • Objectives: This study was conducted in order to improve the current understanding of rare earths(RE) and to provide supporting data for establishing occupational health policies by reviewing the toxicological data and issues caused by the use of RE compounds in various fields. Methods: To evaluate the potential toxicity of RE from the viewpoint of occupational health, we summarized extensive reviews of relevant articles in the toxicology(animals and cells), occupational health and safety, and epidemiologic literature. Results: Although occupational RE exposure occurs extensively from ore mining and refining to end users in various industrial applications, epidemiologic study has not been performed among workers up to now. Bioaccumulation and adverse effects of RE have also been mentioned in ore mining regions and nearby residences, but safety standards for each process are insufficient. Moreover, because new commercial recycling technology will soon be applied to various industries, regulation and policies are needed for preventing abuse of recycling. In the results of animal toxicity for a few REs(mostly cerium, lanthanum, and gadolinium), toxicities of liver, lung, blood, and the nervous system were identified due to oxidative stress, but study of long-term RE exposure is required. Understanding the dual effect for RE and discovery of biomarkers pose a scientific challenge in further mechanism studies. Conclusions: In the future, additional hazard evaluation based on animal experiments is required, alongside continuous research for developing analytical methods and discovering biomarkers. Finally, RE occupational health and safety management needs to be integrated into the sustainable use of these materials.

IT Industrial Policy of Western Area in China (중국 서부지역 IT 산업의 발전 동향)

  • Kwon, Oh-Heung;Choi, Young-Ji;Kim, Do-Hwan
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.64-71
    • /
    • 2005
  • In spite of economic slump of global IT market, China is showing growth of 25% per year. After opening economy, the economic growth of the country haven't flagged. Moreover, according to the economic plan of the President HuJinTao who took office in 2002, IT field has been developing quickly. Even through such development is enough to show off the ability of China in the wrld, it is also a fact that there are many side effects. Among them, the imbalance of development between the east and the west is disturbing the general Chinese development. So the government is making efforts to reduce the gap as a solution, "Go West campaign". While progressing the policy, the related law which restricted domestic demand market advance in 2000 has been abolished. We also have an opportunity for launching the west of China at the same line with other developed countries. Based on such realities, we are going to research the general present state and policy of Chinese IT industries and the direction in which we have to go by investigating the situation of the western area is suggested.

Evaluation of Basic Beneficiation Characteristics for Optimizing Molybdenum Ore Flotation Process (몰리브덴광 부유선별 공정 최적화를 위한 기초 선광 특성 평가)

  • Seongsoo Han;Joobeom Seo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.37-45
    • /
    • 2024
  • Molybdenum is used in various industries because of its high heat and corrosion resistance. It was selected as a critical mineral in Korea. However, there have been recent challenges in production because of the increased depth and decreased grade of molybdenum veins. Consequently, it is necessary to enhance the effectiveness of the molybdenum beneficiation process. In this study, a basic evaluation of beneficiation characteristics was conducted to enhance the effectiveness of the domestic molybdenum ore beneficiation process. The properties of the beneficiation process were assessed using mineralogical analysis, work index, and flotation kinetics. The results revealed that the allowable particle size of the molybdenum ore for liberation was ~100 ㎛. In addition, the work index was calculated to be 14.57 kWh/t. The operating conditions in the flotation units were achieved by determining the optimal flotation time for each process based on flotation kinetics. Finally, the characteristics of molybdenum ore beneficiation provided in this study can be utilized to diagnose the grinding and flotation processes of large-scale molybdenum beneficiation plants.