• Title/Summary/Keyword: Recycled powder

Search Result 299, Processing Time 0.02 seconds

Preparation and Mechanical Properties of Bulk Molding Compound Composite Prepared using Recycled FRP Waste Powder (폐FRP 미분말을 재활용한 BMC 복합재료의 제조 및 기계적 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In general, fiber-reinforced plastics (FRP) wastes are simply buried or burned. Landfill brings about a permanent contamination of soil due to the inability of FRP to decompose and incineration causes an issue of generating toxic gases and dusts. There have been several ways to treat the FRP wastes such as landfill, incineration, chemical recycling, material recycling and the utilization of energy from combustion. Most methods excluding material recycling are known to have critical limitations in economic, technical and environmental manners. However it is known that material recycling is most desirable among the methods handling FRP wastes. In this study, to investigate the purpose of feasibility of material recycling, various bulk molding compound (BMC) specimens were prepared with the various contents of unsaturated polyester resin binder (25, 30, 35 wt%) and the various replacement ratios of FRP wastes powder (0, 25, 50, 75, 100 wt%) substituted for filler. To evaluate the physical properties BMC specimens, various tests such as tensile strength, flexural strength, impact strength, hot water resistance and SEM imaging were conducted. As a results, mechanical strengths decreased with an increase of replacement ratio of FRP waste powder and physical properties of BMC specimens were deteriorated in the hot water resistance. The fluidity of BMC with more than 50 wt% of the replacement ratio of FRP wastes powder decreased remarkably, causing a problem in the BMC composite.

An Experimental Study on the Quality of Concrete with Municipal Solid Waste Incineration Ash (쓰레기 소각재 사용 콘크리트의 품질특성에 대한 실험적 연구)

  • Kim, Jae-Woo;Choi, Jae-Jin;Moon, Dae-Joong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The Quality of municipal solid waste incineration ash (incineration ash) was analyzed for the purpose of the reusing for concrete material. The folwability and strength properties of concrete mixed with incinerator ash were investigated. CaO component was included more than 50% in chemical component of incinerator ash, mean size of 50% accumulated particle distribution of incinerator ash was about $25{\mu}m$. Particle shape of incinerator ash ($IA_1$) was massed the round shape with fine particle, particle shape of incinerator ash ($IA_2$) was piled up the sheet shape according to manufacture procedure. The Quality of concrete was effected by use of incinerator ash. When the incinerator Ash ($IA_2$) was used, slum of concrete was increased and dosage of high range water reducing agent was reduced. However, strength development of concrete was decreased. Dosage of high range water reducing agent was increased by combined use of incinerator ash ($IA_2$) and diatomite powder, but strength development of concrete was improved. Ratio of compressive strength and tensile strength was in the range 85%~105% of CEB-FIP model code.

A Study on Viscosity Reducing of Cement-Based Materials by Replacing Byproducts and Adding Low-Viscosity Type HRWR (산업부산물 치환 및 저점도형 고성능 감수제를 사용한 시멘트 계열 재료의 점도저하 방안 연구)

  • Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.353-358
    • /
    • 2017
  • The aim of this research is providing a fundamental idea on reducing viscosity of high performance cementitous materials. In rheological aspect, to determine the fluidity of the cementitious materials, both yield stress and viscosity should be controlled. For the high performance cementitious materials with low water-to-binder ratio and high volume fraction, it was difficult to reduce the viscosity with superplasticizer while reducing yield stress was relatively easy. Hence, in this research, with the goal of reducing viscosity of the cementitious materials, both ways of reducing viscosity were suggested: achieving proper combination of powder conditions, and adding low-viscosity typed water reducer. First, by replacing various byproduct powders, specifically, raw coal ash and wasted limestone powder showed favorable results on reducing viscosity of the cement paste. Regarding the low viscosity typed superplasticizer, it showed a good performance on reducing viscosity comparing with generic superplasticizer. Therefore, based on the results of this research, it is expected to provide a fundamental idea on reducing viscosity of cementitious materials by various methods.

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products (산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Si-Hwan;Koh, Kyung-Taek;Lee, Jang-Hwa;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

Hardening State and Basic Properties Changes According to the Mixture Ratio of MMA Resin Used as a Waterproofing Coating Material in Concrete Bridges (콘크리트 교면용 도막방수재로 사용되는 MMA 수지의 배합비율에 따른 경화상태 및 기본 물성에 관한 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.224-234
    • /
    • 2019
  • Waterproof layers are installed in civil engineering structures and bridge construction is commonly finished by applying a layer of regular or asphalt concrete above the waterproof layer. However, asphalt materials are susceptible to melting at high temperature due to its superior temperature sensitivity, and this causes the waterproofing material to melt due to the high temperature of the asphalt concrete, thereby increasing the defect occurrence rate due to the thickness reduction. In this study, tensile strength and elongation of hard and soft type of MMA(Methyl Methacrylate) applied to bridges were compared in accordance to standard performance criteria based on different mixture ratios. Results of comparative testing showed that hard MMA resin can display a satisfactory tensile strength, and soft MMA resin displays satisfactory elongation properties, but as the two resin types are separately used, neither types are able to satisfy the standard requirements outlined in KS F 4932. When the amount of the powder exceeds 56.25% of the total amount, voids are generated on the surface after curing and self leveling was impossible and a heterogeneous surface is formed. Furthermore, when the hard resin: soft resin: powder mixture ratio was set to 15g: 85g: 150g. the tensile strength was $1.5N/mm^2$ and the elongation percentage was 133% which satisfy the tensile performance of KS F 4932.

Study on Optimum Mixture of Industrial By-Products for Lightweight Foamed Filler Production by Mixture Experimental Design (혼합물 실험계획법에 의한 경량기포 충전재 제조를 위한 산업부산물의 최적 배합 검토)

  • Woo, Yang-Yi;Park, Keun-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This research studied production of lightweight filling production for sink hole restoration utilizing various industrial by-products(2kinds of fly ash, petro-cokes CFBC ash, blast furnace slag fine particle). For this purpose, the mixed raw material properties(compressive strength) behaviors according to the blending ratio of industrial by-products were examined by applying the experimental design method and statistical analysis was performed using the commercial program MINITAB. Compressive strengths of industrial by-products were strongly dependent on blast furnace slag powder. Compressive strength(3days aging) was 3~11MPa depending on the amount of blast furnace slag powder used. The use of CFBC fly ash was evaluated to have the least effect on compressive strength. In addition, the compressive strength and the coefficient of permeability were measured by preparing foamed concrete for the experimental batch 1 condition in the mixture experimental design. In this case, the bulk density is 0.9 to 1.0, the apparent porosity is 30 to 50%, the compressive strength(3days old) is 1 to 2MPa, and the permeability coefficient is $10^{-2}$ to $10^{-3}cm/sec$.

A Study on Comparison of Density Test Methods for Quality Control of Cement and Mineral Admixture (시멘트 및 혼화재의 품질관리를 위한 밀도 시험방법 비교 연구)

  • Jae-Seung, Lee;Sang-Kyun, Noh;Cheol, Park;Hong-Chul, Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.435-442
    • /
    • 2022
  • In this study, the density of KS L 5110 was compared with that of gas pycnometer and electronic densimeter for efficient density management of cement, blast furnace slag powder and fly ash. Correlation and usability according to the test method were reviewed, and based on the results of the experiment, the availability of alternative test methods was analyzed. As a result of the density test according to test methods, the density of cement, blast furnace slag powder and fly ash tended to decrease in the order of gas pycnometer, KS L 5110 and electronic densimeter. Because the volume range of the sample to be evaluated is different depending on test methods. The coefficient of determination R2 was in the range of 0.71 to 0.93, and the correlation according to test methods showed a relatively good correlation. If correction is applied through correlation, it is analyzed that alternative test methods can be used. As a result of the usability review considering the test procedure, measurement time and coefficient of variation, the gas pycnometer had the simplest test procedure and good reliability. In addition, it is expected that the reproducibility between the testers is relatively high because the skill is not greatly required.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

The Feasibility Study for Utilization of Blended Cement as a Activator of Bottom Ash from Circulating Fluidized Bed Combuster Boiler (순환유동층 보일러 바텀애시의 혼합시멘트 자극제 활용을 위한 타당성 연구)

  • Park, JongTak;Jung, Gwon Soo;Kang, Chang Ho;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.255-262
    • /
    • 2020
  • Blended cement with fly ash and bottom ash from Circulating Fluidized Bed Combustor boiler(CFBC) burned at a low temperature, can be high heat of hydration and abnormal setting caused by higher volumn contents of Fe2O3, free-CaO, SO3. In this study, the ground CFBC bottom ash powder mixed with blast furnace slag was used as substitute activator of gypsum and recycled iron slag was produced from mix and pulverized by ball mill to increase the recycling rate. The effect on compressive strength of cements with the mixture of original and hydrated bottom ash mixtures with BFS with small water, respectively, was analyzed, and it was found that the hydrated bottom ash activator was more effective in initial strength development. To improve the initial strength of blended cement, an activator mixed with a blast furnace slag and bottom ash mixing ratio of 5:95 and 10:90, respectively, the slag cement by about 6%, and it was analyzed to develop an initial strength similar to gypsum as a conventional activator.

Development of flame retardant materials utilizing recycled polypropylene and inorganic waste (재활용(再活用) 폴리프로필렌과 무기계(無機界) 폐기물(廢棄物)을 이용(利用)한 난연성(難燃性) 소재(素材) 개발(開發))

  • Chun, Byoung-Chul;Cho, Tae-Keun;Park, Hyun-Gue;Choi, Hyung-Joon;Chung, Yong-Chan;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • Inorganic shell powder waste was added to recycled polypropylene(COPP), and its effect on the mechanical properties and flammability was investigated. Compatibilizer(Polytail H) was added to improve mechanical properties of COPP/shell composites. Also three different flame retardants($Al_2O_3$, DBDPO, $Sb_2O_3$) were added to improve flammability. Experimental results indicated that addition of compatibilizer resulted in an improved mechanical properties, and especially impact strength approached that of 100 wt% COPP. Addition of flame retardant did not result in decreased mechanical properties. UL-94 flammability test indicated that COPP/shell composite did not show good flame retardancy, however, in the case of COPP/shell composites containing flame retardant showed good flammability. flammability was found $Sb_2O_3>Al_2O_3>DBDPO$ in this order. Finally, UL-94 V-0 grade was found in COPP/shell composite with $Al_2O_3$, compatibilizer, and 40 wt% shell, and COPP/shell composites with $Sb_2O_3$.