• 제목/요약/키워드: Recycled Resources

검색결과 1,549건 처리시간 0.031초

A Study on the Environmentally-friendly Design Techniques Extract and Applying Modern of Traditional Residential Area - The Case of Dokrakdang in Kyungbuk Province - (전통주거공간의 환경친화적 설계기법 추출 및 현대적 적용 - 경상북도 독락당을 사례로 -)

  • Heo, Jun;Song, Byeong Hwa
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • 제29권2호
    • /
    • pp.63-72
    • /
    • 2011
  • The aim of this study, a traditional residential area in the environmentally friendly design techniques to identify the techniques and principles that have been carried out to reestablish the principles. To do this, through literature review environmental performance is reflected in the traditional residential area side of resources conservation, locational aspects, spatial configuration, and how cases were selected looking for ways to apply modern. Are examples of upper class housing in the Chosen Dynasty Period period construction relatively well-preserved round and a good building with a clear housing Dokrakdang year were selected. Locational aspects of the terrain with minimal changes to the building and construction techniques were entirely in terms of environmental conservation and environmental temperature was adjusted to regulate the room temperature technique could be seen. In terms of cycling in natural materials were recycled. and water make used of positive through water cycling technique & water control. In addition, the importance of landscape views overlooking the landscape from inside to outside through the regulation of the various internal and external space technique was used to attract and expand. Traditionality in the pursuit of modern space, simply cut off because of tradition rather than to restore or recover the organizing principle inherent in the traditional space, and extraction of the contemporary social, cultural and environmental understanding of space is acceptable in basis. Environmentally-friendly design techniques in a traditional residential area for a long time to be developed by the experience of its application of modern environmental and energy problems and pleasant environment to the creation of human life and are subject to significant swings in that.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • 제31권6호
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Environmental Assessment of Shotcrete Using Recycled Industrial By-Products (Fly Ash) and Silica Fume (산업부산물(플라이애시)과 실리카퓸을 재활용한 숏크리트의 환경유해성 평가)

  • Park, Cheolwoo;Sim, Jongsung;Kang, Taesung;Park, Seongeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권3C호
    • /
    • pp.159-165
    • /
    • 2010
  • The problems such as natural resource exhaustion, pollutant emission and waste generation are increasing worldwide with the industrial development. The quantity of the industrial by-product in Korea is 6 million tons a year, and even its basic treatment processes including landfill, incineration and storage have reached their limits. In this study, fly ash and silica fume were applied to shotcrete to develop a method for the reuse of resources and to increase the use of fly ash, which is an industrial waste. An environmental hazard evaluation is a must to actively address the worldwide environmental problems, though. Therefore, an environmental impact assessment was conducted using the chemical content analysis test and heavy metal exudation test, for ten mixtures that were obtained through the pre-mixing and compressive strength tests. The results of the compressive strength test showed that all mixtures satisfied national and international standards. Cr, Cd and Hg were not detected, and Pb was detected only in some cases with fly ash. Cu and As were detected in all mixtures, but all of them satisfied national and international standards.

Analysis of the Effects of Recycling and Reuse of Used Electric Vehicle Batteries in Korea (한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구)

  • Yujeong Kim
    • Economic and Environmental Geology
    • /
    • 제57권1호
    • /
    • pp.83-91
    • /
    • 2024
  • According to the IEA (2022), global rechargeable battery demand is expected to reach 1.3 TWh in 2040. EV batteries will account for about 80% of this demand, and used EV batteries are expected to be discharged after 30 years. Used EV batteries can be recycled and reused to create new value. They can also resolve one of the most vulnerable parts of the battery supply chain: raw material insecurity. In this study, we analyzed the amount of used batteries generated by EV in Korea and their potential for reuse and recycling. As a result, it was estimated that the annual generation of used batteries for EV began to increase to more than 100,000 in '31 and expanded to 810,000 in '45. In addition, it was found that the market for recycling EV batteries in '45 could be expected to be equivalent to the production of 1 million batteries, and the market for reuse could be expected to be equivalent to the production of 36 Gwh of batteries. On the other hand, according to the plan standard disclosed by the recycling company, domestic used EV batteries can account for 11% of the domestic recycling processing capacity (pre-treatment) ('30). So it will be important to manage the import and export of used batteries in terms of securing raw materials.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제31권3호
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제45권2호
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • 제16권1호
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암(황송푸 현무암)의 암석학적/지화학적 특성)

  • Kim, Eunju;Hirata, Chiharu;Jeong, Hoon Young;Kil, Youngwoo;Yang, Kyounghee
    • Korean Journal of Mineralogy and Petrology
    • /
    • 제33권4호
    • /
    • pp.307-324
    • /
    • 2020
  • Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.

Typology of Korean Eco-sumers: Based on Clothing Disposal Behaviors (관우한국생태학적일개예설(关于韩国生态学的一个预设): 기우복장탑배적행위(基于服装搭配的行为))

  • Sung, Hee-Won;Kincade, Doris H.
    • Journal of Global Scholars of Marketing Science
    • /
    • 제20권1호
    • /
    • pp.59-69
    • /
    • 2010
  • Green or an environmental consciousness has been a major issue for businesses and government offices, as well as consumers, worldwide. In response to this movement, the Korean government announced, in the early 2000s, the era of "Green Growth" as a way to encourage green-related business activities. The Korean fashion industry, in various levels of involvement, presents diverse eco-friendly products as a part of the green movement. These apparel products include organic products and recycled clothing. For these companies to be successful, they need information about who are the consumers who consider green issues (e.g., environmental sustainability) as part of their personal values when making a decision for product purchase, use, and disposal. These consumers can be considered as eco-sumers. Previous studies have examined consumers' purchase intention for or with eco-friendly products. In addition, studies have examined influential factors used to identify the eco-sumers or green consumers. However, limited attention was paid to eco-sumers' disposal or recycling behavior of clothes in comparison with their green product purchases. Clothing disposal behaviors are ways that consumer can get rid of unused clothing and in clue temporarily lending the item or permanently eliminating the item by "handing down" (e.g., giving it to a younger sibling), donating, exchanging, selling, or simply throwing it away. Accordingly, examining purchasing behaviors of eco-friendly fashion items in conjunction with clothing disposal behaviors should improve understanding of a consumer's clothing consumption behavior from the environmental perspective. The purpose of this exploratory study is to provide descriptive information about Korean eco-sumers who have ecologically-favorable lifestyles and behaviors when buying and disposing of clothes. The objectives of this study are to (a) categorize Koreans on the basis of clothing disposal behaviors; (b) investigate the differences in demographics, lifestyles, and clothing consumption values among segments; and (c) compare the purchase intention of eco-friendly fashion items and influential factors among segments. A self-administered questionnaire was developed based on previous studies. The questionnaire included 10 items of clothing disposal behavior, 22 items of LOHAS (Lifestyles of Health and Sustainability) characteristics, and 19 items of consumption values, measured by five-point Likert-type scales. In addition, the purchase intention of two eco-friendly fashion items and 11 attributes of each item were measured by seven-point Likert type scales. Two polyester fleece pullovers, made from fabric created from recycled bottles with the PET identification code, were selected from one Korean brand and one US imported brand among outdoor sportswear brands. A brief description of each product with a color picture was provided in the survey. Demographic variables (i.e., gender, age, marital status, education level, income, occupation) were also included. The data were collected through a professional web survey agency during May 2009. A total of 600 final usable questionnaires were analyzed. The age of respondents ranged from 20 to 49 years old with a mean age of 34 years. Fifty percent of the respondents were males and about 58% were married, and 62% reported having earned university degrees. Principal components factor analysis with varimax rotation was used to identify the underlying dimensions of the clothing disposal behavior scale, and three factors were generated (i.e., reselling behavior, donating behavior, non-recycling behavior). To categorize the respondents on the basis of clothing disposal behaviors, k-mean cluster analysis was used, and three segments were obtained. These consumer segments were labeled as 'Resale Group', 'Donation Group', and 'Non-Recycling Group.' The classification results indicated approximately 98 percent of the original cases were correctly classified. With respect to demographic characteristics among the three segments, significant differences were found in gender, marital status, occupation, and age. LOHAS characteristics were reduced into the following five factors: self-satisfaction, family orientation, health concern, environmental concern, and voluntary service. Significant differences were found in the LOHAS factors among the three clusters. Resale Group and Donation Group showed a similar predisposition to LOHAS issues while the Non-Recycling Group presented the lowest mean scores on the LOHAS factors compared to the other segments. The Resale and Donation Groups described themselves as enjoying or being satisfied with their lives and spending spare-time with family. In addition, these two groups cared about health and organic foods, and tried to conserve energy and resources. Principal components factor analysis generated clothing consumption values into the following three factors: personal values, social value, and practical value. The ANOVA test with the factors showed differences primarily between the Resale Group and the other two groups. The Resale Group was more concerned about personal value and social value than the other segments. In contrast, the Non-Recycling Group presented the higher level of social value than did Donation Group. In a comparison of the intention to purchase eco-friendly products, the Resale Group showed the highest mean score on intent to purchase Product A. On the other hand, the Donation Group presented the highest intention to purchase for Product B among segments. In addition, the mean scores indicated that the Korean product (Product B) was more preferable for purchase than the U.S. product (Product A). Stepwise regression analysis was used to identify the influence of product attributes on the purchase intention of eco product. With respect to Product A, design, price and contribution to environmental preservation were significant to predict purchase intention for the Resale Group, while price and compatibility with my image factors were significant for the Donation Group. For the Non-Recycling Group, design, price compatibility with the factors of my image, participation to eco campaign, and contribution to environmental preservation were significant. Price appropriateness was significant for each of the three clusters. With respect to Product B, design, price and compatibility with my image factors were important, but different attributes were associated significantly with purchase intention for each of the three groups. The influence of LOHAS characteristics and clothing consumption values on intention to purchase Products A and B were also examined. The LOHAS factor of health concern and the personal value factor were significant in the relationships with the purchase intention; however, the explanatory powers were low in the three segments. Findings showed that each group as classified by clothing disposal behaviors showed differences in the attributes of a product, personal values, and the LOHAS characteristics that influenced their purchase intention of eco-friendly products. Findings would enable organizations to understand eco-friendly behavior and to design appropriate strategic decisions to appeal eco-sumers.