• Title/Summary/Keyword: Recycled Plastic

Search Result 161, Processing Time 0.018 seconds

Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse (두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화)

  • Yang, Seung-Koo;Shin, Kil-Ho;Song, Yong-Su;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.311-328
    • /
    • 2017
  • This study was carried out to investigate the changes in soil microorganisms and soil enzymes by split irrigation and organic matter application under no-tillage green house conditions. Soil bacteria and fungi abundances were higher in soybean cake fertilizer than in the soil without the soybean cake fertilizer under whole quantity irrigation. Bacteria and fungi abundances in soil increased with increasing organic fertilizer application rate. Bacteria and fungi amount in the soil increased at half division irrigation in no-treatment of soybean cake fertilizer compared with whole quantity irrigation. Actinomycete amount in the soil decreased with increasing soybean cake fertilizer with whole quantity irrigation while clearly increased in no-treatment of soybean cake fertilizer. Actinomycete amount in soil clearly increased with increasing organic fertilizer input at half division irrigation. Chitinase activity in the soil decreased in soybean cake fertilizer with increasing organic fertilizer input, while increased in no-treatment of soybean cake fertilizer. Chitinase activity in the soil increased at half division irrigation compared with whole quantity irrigation regardless of soybean cake fertilizer input. ${\beta}$-Glucosidase activity in the soil was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. ${\beta}$-Glucosidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. ${\beta}$-Glucosidase activity in the soil clearly increased in no-treatment of soybean cake fertilizer at half division irrigation compared with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil was not significantly different at half division irrigation and whole quantity irrigation in organic fertilizer input, while increased at half division irrigation in no-treatment of soybean cake fertilizer. Acid phosphatase activity increased at standard level 66% in soybean cake fertilizer, while was not significantly different in no-treatment of soybean cake fertilizer. Spore density of Arbuscular Mycorrhizal Fungi (AMF) in the soil increased with increasing organic fertilizer input at whole quantity irrigation in no-treatment of soybean cake fertilizer, while decreased above the standard level 66% in organic fertilizer input. However, spore density of AMF in the soil was not significantly different in soybean cake fertilizer regardless of input amount of organic fertilizer. Root colonization rate of AMF in red pepper roots was not significant difference at two irrigations regardless of soybean cake input.