• Title/Summary/Keyword: Recycled Liquid Fraction

Search Result 2, Processing Time 0.014 seconds

Effect of [EMIM]Ac Recycling on Salix gracilistyla Miq. Pretreatment for Enzymatic Saccharification

  • HAN, Song-Yi;PARK, Chan-Woo;KWON, Gu-Joong;KIM, Jong-Ho;KIM, Nam-Hun;LEE, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.405-413
    • /
    • 2020
  • Recycling of ionic liquid (1-ethyl-3-methylimidazolium acetate, [EMIM]Ac) after the pretreatment of Salix gracilistyla Miq. was conducted and the effect of the recycling number on the enzymatic saccharification yield was investigated. Enzymatic saccharification was performed using an enzyme cocktail (Acremonium cellulase and Optimash BG) at 50 ℃ for 72 h. All recycled [EMIM]Ac samples showed a lower amount of water soluble fraction than pure [EMIM]Ac. On increasing the recycling number from 1 to 4, the amount of water soluble fraction decreased from 18% to 15%. The X-ray diffraction pattern of the products pretreated with recycled [EMIM]Ac showed cellulose I crystalline polymorph. The crystallinity of the product pretreated with recycled [EMIM]Ac was 47-49%, which was lower than 33% of that with pure [EMIM]Ac. The yields of glucose and xylose decreased in the pretreatment with recycled [EMIM]Ac compared to that with pure [EMIM]Ac.

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.