• Title/Summary/Keyword: Recycled Concrete

Search Result 1,411, Processing Time 0.023 seconds

An Experimental Study on the Shear Performance of High-strength Concrete Beams Made with Recycled Aggregate (재생골재를 사용한 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구)

  • 박우철;이경희;박완신;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.879-884
    • /
    • 2001
  • The use of recycled-aggregate concrete is increasing faster than the development of appropriate design recommendations. In addition, recycled-aggregate and higher compressive strengths are two of the most desired characteristics to improve the use of concrete as a construction material. The paper reports limited experimental data on the shear capacity of high-strength recycled aggregate concrete beams. Ten beams were tested to determine their diagonal cracking and ultimate shear capacities. The variable in the test program were concrete strength(300, 500 and 700kgf/$cm^{2}$), and shear span/depth ratio (a/d : 2.0, 3.0 and 4.0). Test results indicate that the ACI Building code prediction of Eq.(11-3) and (11-5) for high-strength recycled aggregate concretes are unconservative for all beams (with concrete strength 300, 500 and 700kgf/$cm^{2}$, a/d ratios 2.0, 3.0 and 4.0). But Zsutty Equation for high-strength recycled aggregate concretes is conservative for all beams. The results of the experimental investigation on the cracking patterns for beams show that the angle that the critical inclined crack makes with the horizontal axis decreases with increasing a/d.

  • PDF

An Experimental Study on Recycled Aggregate Concrete for Artificial Fishing Reefs (인공어초 개발을 위한 재생골재 콘크리트의 실험적 연구)

  • 홍종현;김문훈;우광성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.16-22
    • /
    • 2003
  • The mechanical characteristics of newly recycled aggregate concrete on the basis of the proposed mix design model have been studied to develop the precast artificial fishing reefs. In the first task, the experimental test for the recycled aggregates taken from Jeju Island has been carried out to verify the material properties in terms of specific gravity, percentage of solids, absorption and abrasion of coarse aggregates. In the second task, the experimental parameters of newly recycled aggregate concrete are investigated to meet with the requirements of guidelines with respect to slump, unit weight, pH, ultrasonic velocity, void ratio, and compressive strength which are made of sea-shore sand ad slag cement. The natural aggregate and polypropylene fiber are added to newly recycled aggregate concrete to improve the compressive strength and quality. The optimal mix proportions for compressive strength are W/C=30%, S/a=15%, NA/G=50% in porous concrete case, W/C=40%, S/a=45% in plain concrete case, and W/C=40%, S/a-45%, PF=1.0kg/㎥ in fiber reinforced concrete case.

Concrete-steel bond-slip behavior of recycled concrete: Experimental investigation

  • Ren, Rui;Qi, Liangjie;Xue, Jianyang;Zhang, Xin;Ma, Hui;Liu, Xiguang;Ozbakkaloglu, Togay
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.241-255
    • /
    • 2021
  • In order to study the interfacial bond-slip behavior of steel reinforced recycled concrete (SRRC) under cyclic loading, thirteen specimens were designed and tested under cyclic loading and one under monotonic loading. The test results indicated that the average bond strength of SRRC decreased with the increasing replacement ratio of recycled concrete, whereas the bond strength increased with an increase in the concrete cover thickness, the volumetric stirrup ratio, and the strength of recycled concrete. The ultimate bond strength of the cyclically-loaded specimen was significantly (41%) lower than that of the companion monotonically-loaded specimen. The cyclic phenomena also showed that SRRC specimens went through the nonslip phase, initial slip phase, failure phase, bond strength degradation phase and residual phase, with all specimens exhibiting basically the same shape of the bond-slip curve. Additionally, the paper presents the equations that were developed to calculate the characteristic bond strength of SRRC, which were verified based on experimental results.

The Effect on the Properties of Recycled Aggregate Mortar with the Qualites of Waste Concrete (페콘크리트의 품질이 재생모니터의 특성에 미치는 영향)

  • 김효구;김기철;신동인;한천구;박복만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.392-397
    • /
    • 1998
  • In this paper, the properties of cement mortar used recycled aggregate are analyzed and compared with river and crushed sand mortar. Recycled aggregates are made by crushing wasted concrete had various compressive strength, and test items are the properties of fresh mortar, hardened mortar and durability. According to the experimental results, flow, unitweight, strength and durability of cement mortar used recycled aggregates decrease compared with those of river and crushed sand mortar.

  • PDF

Mechanical Properties of Recycled Aggregate Concrete (재생골재 치환률에 따른 콘크리트의 역학적 특성)

  • 이명규;윤건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.119-122
    • /
    • 1999
  • In this paper, the properties of concrete used recycled aggregate are analyzed. The specimens are manufactured for the compressive strength of 210㎏/㎠ with recycled aggaregate ratio of 0%, 20%, 40%, 60%, 80%, 100%, respectivey. At curing 28days, compressive strength, tensile strength, flexural strength, dry-shrinkage, static modulus of elasticity and poission's ratio have been tested according to replacement ratio of recycled aggregate.

  • PDF

An Experimental Study on the Evaluation of Compressive Strength of Recycled Aggregate Concrete by the Core and the Non-Destructive Testing (코어 및 비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가에 대한 실험적 연구)

  • Yang Keun-Hyeok;Kim Yong-Seok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.133-136
    • /
    • 2005
  • Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.

  • PDF

Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate (재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF

An effect of Reclaimed Asphalt Concrete on the Strength Development of Concrete using Recycled-Aggregate (폐아스콘을 함유한 재생콘크리트의 강도발현 특성평가)

  • Lee Wook Jae;Seo Ki Won;Kim Hag Youn;Kim Nam Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.205-208
    • /
    • 2004
  • The purpose of this study is to recycle waste concrete and reuse reclaimed asphalt concrete as a concrete coarse aggregate. In this experiment, recycled coarse aggregate was substitute for natural crushed aggregate at the rate of 0, 30, $50\%$, and reclaimed asphalt concrete was substitute for recycled coarse aggregate at the rate of 0, 10, 20, $30\%$. According to the experimental results, as the reclaimed asphalt concrete content has influence on the properties of recycled aggregate concrete such as compressive and tensile strength, the criteria for the substitute ratio should be required to be set.

  • PDF

Strength and behaviour of recycled aggregate geopolymer concrete beams

  • Deepa, Raj S;Jithin, Bhoopesh
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In the present day scenario, concrete construction is rapidly becoming uneconomical and non sustainable practice, due to the scarcity of raw materials and environmental pollution caused by the manufacturing of cement. In this study an attempt has been made to propose recycled aggregates from demolition wastes as coarse aggregate in geopolymer concrete (GPC). Experimental investigations have been conducted to find optimum percentage of recycled aggregates (RA) in GPC by replacing 20%, 30%, 40%, 50% and 60% of coarse aggregates by RA to produce recycled aggregate geopolymer concrete (RGPC). From the study it has been found that the optimum replacement percentage of recycled aggregates was 40% based on mechanical properties and workability. In order to study and compare the flexural behaviour of RGPC and GPC four beams of size $175mm{\times}150mm{\times}1200mm$ were prepared and tested under two point loading. Test results were evaluated with respect to first crack load, ultimate load, load-deflection characteristics, ductility and energy absorption characteristics. Form the experimental study it can be concluded that the addition of recycled aggregate in GPC causes slight reduction in its strength and ductility. Since the percentage reduction in strength and behaviour of RGPC is meager compared to GPC it can be recommended as a sustainable and environment friendly construction material.

A Experimental Study on the Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 특성연구)

  • Hong, Se-Hwa;Son, Ki-Sang;Choi, Jea-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. This result has same decreasing proportion to tensile strength of the material. Resistant capacity change of beam varying with recycled powder mixture has been decreased down to 60% of normal concrete bean capacity, while there are 80% decrease of material strength. But strength and capacity change has same consistent decrease ratio. It is found that recycled powder with approximately 15% unit concrete volume can be replaced with cement in reasonable admixture mixing condition.