• Title/Summary/Keyword: Recursive Method

Search Result 745, Processing Time 0.026 seconds

Time-varying Estimation of Vocal Track Parameters During the Speech Transition Regions (음성천이구간에서의 성도 파라메타 시변추정에 관한 연구)

  • Choi, Hong-Sub
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 1997
  • In this paper, sample selective RLS(SSRLS) method is proposed, which aims to eliminate the influence of pitch bias. Its basic concepts are as follows. First it extracts the open glottis interval by using the residual signals, then estimates the formant values from the selected speech samples excluding above open glottis interval. This method has some analogy with the SSLPS, the simulation is conducted upon the synthetic and real speech. From these results, we find more usefulness of the proposed method than the conventional ones.

  • PDF

Sensitivity-based reliability analysis of earth slopes using finite element method

  • Ji, Jian;Liao, Hong-Jian
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.545-560
    • /
    • 2014
  • For slope stability analysis, an alternative to the classical limit equilibrium method (LEM) of slices is the shear strength reduction method (SRM), which can be integrated into finite element analysis or finite difference analysis. Recently, probabilistic analysis of earth slopes has been very attractive because it is capable to take the soil uncertainty into account. However, the SRM is less commonly extended to probabilistic framework compared to a variety of probabilistic LEM analysis of earth slopes. To overcome some limitations that hinder the development of probabilistic SRM stability analysis, a new procedure based on recursive algorithm FORM with sensitivity analysis in the space of original variables is proposed. It can be used to deal with correlated non-normal variables subjected to implicit limit state surface. Using the proposed approach, a probabilistic finite element analysis of the stability of an existing earth dam is carried out in this paper.

On-line Identification of fuzzy model using HCM algorithm (HCM을 이용한 퍼지 모델의 On-Line 동정)

  • Park, Ho-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2929-2931
    • /
    • 1999
  • In this paper, an adaptive fuzzy inference and HCM(Hard C-Means) clustering method are used for on-line fuzzy modeling of nonlinear and complex system. Here HCM clustering method is utilized for determining the initial parameter of membership function of fuzzy premise rules and also avoiding overflow phenomenon during the identification of consequence parameters. To obtain the on-line model structure of fuzzy systems. we use the recursive least square method for the consequent parameter identification. And the proposed on-line identification algorithm is carried out and is evaluated for sewage treatment process system.

  • PDF

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

A Clustered Dwarf Structure to Speed up Queries on Data Cubes

  • Bao, Yubin;Leng, Fangling;Wang, Daling;Yu, Ge
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.195-210
    • /
    • 2007
  • Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Design of Linear, Exponential and Bell Type Discrete Filters for Acceleration and Deceleration of Servo Motors (서보모터의 가감속을 위한 직선형,지수형 및 벨형 이산필터 설계)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.52-60
    • /
    • 1997
  • This paper proposes the effective method of the software based motion control by using lenear, exponential and bell type discrete filters for acceleration and deceleration of servo motors. Recursive filters are designed in discrete time domain which can reduce computation time and vibration of motors due to load disturbance. Also it deals with the method which decides the time constants of filters when a machine tool is driven at rapid, cutting and jog feedrate. Validity of the proposed method is verified by corner cutting experiments.

  • PDF

Prediction of Ozone Formation Based on Neural Network and Stochastic Method (인공신경망 및 통계적 방법을 이용한 오존 형성의 예측)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.

  • PDF

Block-wise Adaptive Predictive PLS using Block-wise Data Extraction (데이터 추출 과정을 적용한 Block-wise Adaptive Predictive PLS)

  • Kim Sung-Young;Chung Chang-Bock;Choi Soo-Hyoung;Lee Bom-Sock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.706-712
    • /
    • 2006
  • Recursive Partial Least Squares(RPLS) method has been used for processing the on-line available multivariate chemical process data and modeling adaptive prediction model for process changes. However, RPLS method is unstable in PLS model updating because RPLS method updates PLS model by merging past PLS model and new data. In this study, Adaptive Predictive Partial Least Squres(APPLS) method is suggested for more sensitive adaptation to process changes. By expanding APPLS method, block-wise Adaptive Predictive Partial Least Squares(block-wise APPLS) method is suggested for a lager scale data of chemical processes. APPLS method has been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PTT), and block-wise APPLS method has been applied to predict the cetane number using NIR Diesel Spectra data. APPLS and block-wise APPLS methods show better prediction and updating performance than RPLS method.

Identification of Closed Loop System by Subspace Method (부분공간법에 의한 페루프 시스템의 동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Hong, Soon-Il;Kim, Jong-Kyung;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF