• Title/Summary/Keyword: Recursive Learning

Search Result 112, Processing Time 0.029 seconds

Use of learning method to generate of motion pattern for robot (학습기법을 이용한 로봇의 모션패턴 생성 연구)

  • Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.23-30
    • /
    • 2018
  • A motion pattern generation is a process of calculating a certain stable motion trajectory for stably operating a certain motion. A motion control is to make a posture of a robot stable by eliminating occurring disturbances while a robot is in operation using a pre-generated motion pattern. In this paper, a general method of motion pattern generation for a biped walking robot using universal approximator, learning neural networks, is proposed. Existing techniques are numerical methods using recursive computation and approximating methods which generate an approximation of a motion pattern by simplifying a robot's upper body structure. In near future other approaches for the motion pattern generations will be applied and compared as to be done.

Neuro-Fuzzy System and Its Application Using CART Algorithm and Hybrid Parameter Learning (CART 알고리즘과 하이브리드 학습을 통한 뉴로-퍼지 시스템과 응용)

  • Oh, B.K.;Kwak, K.C.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.578-580
    • /
    • 1998
  • The paper presents an approach to the structure identification based on the CART (Classification And Regression Tree) algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy system. By using the CART algorithm, the proposed method can roughly estimate the numbers of membership function and fuzzy rule using the centers of decision regions. Then the parameter identification is carried out by the hybrid learning scheme using BP (Back-propagation) and RLSE (Recursive Least Square Estimation) from the numerical data. Finally, we will show it's usefulness for fuzzy modeling to truck backer upper control.

  • PDF

A discrete iterative learning control method with application to electric servo motor control

  • Park, Hee-J.;Cho, Hyung-S.;Oh, Sang-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1387-1392
    • /
    • 1990
  • In this paper, an iterative learning control algorithm for unknown linear discrete systems is proposed by employing a parameter estimator together with an inverse system model. Regardless of initial error and inherent parameter uncertainty, a good tracking control performance is obtained using the proposed learning control algorithm characterized by recursive operations. A sufficient condition for convergency is provided to show the effectiveness of the proposed algorithm. To investigate the performance of the algorithm a series of simulations and experiments were performed for the tracking control of a servo motor.

  • PDF

Radial Basis Hybrid Neural Network Modeling for On-line Detection of Machine Condition Change (기계상태의 변화를 온라인으로 탐지하기 위한 Radial Basis 하이브리드 뉴럴네트워크 모델링)

  • Wang, Gi-Nam;Kim, Gwang-Sub;Jeong, Yoon-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.113-134
    • /
    • 1994
  • A radial basis hybrid neural network (RHNN) is presented for an on-line detection of machine condition change. Two-phase modeling by RHNN is designed for describing a machine condition process and for predicting future signal. A moving block procedure is also designed for detecting a process change. A fast on-line learning algorithm, the recursive least square estimation, is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.

  • PDF

A New Incremental Instance-Based Learning Algorithm (새로운 점진적 인스턴스 기반 학습기법)

  • Han, Jin-Chul;Yoon, Chung-Hwa
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.477-480
    • /
    • 2005
  • 메모리 기반 추론 기법에서 기억공간의 효율적 사용과 분류 시간을 줄이기 위한 다양한 방법들이 연구되고 있으며, NGE(Nested Generalized Exemplar) 이론을 예로 들 수 있다. 본 논문에서는 학습 패턴 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging) 기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA) 기법을 제안한다.

  • PDF

동적 비선형 신호의 온라인 모델링

  • 한정희;왕지남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.371-376
    • /
    • 1994
  • This paper presents an on-line modeling method approach for the machine condition. the machine condition is continuously monitored with a sensor such as, a vibration, a current, an acoustic emission (AE) sensor. In this study, neural network modeling by radial basis function is designed for analysis a prediction error. An on-line learning algorithm is designed using the RLS(recursive least square) estimation and the existing clustering method of Kohonen neural network. Experimental results show that the proposed RBNN modeling is suitable for predicting simulated data.

  • PDF

A Knowledge Base Construction for Control Application (제어응용을 위한 지식베이스의 구축)

  • 김도성;이명호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.720-728
    • /
    • 1990
  • A learning control method is proposed in this paper, using a knowledge base which contains control rules, data, and patterns of the past experience of a plant. The knowledge for plant control is retrieved from measurement data during operation and continually modified after control performance evaluation. A control method is proposed using tinually modified after control performance evaluation. A control method is proposed using fuzzy model of the plant and a recursive statistic decision method of fuzzy subset for control rule generation. Also, the resulting knowledge-based control algorithm has been applied to aprocess and its performance improvement and proper generation of appropriate control rules have been verified.

  • PDF

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF