Kim, Byung-Soo;Ahn, Joon-Hyung;Lee, Jae-Moo;Park, Dong-Guen;Kim, Hye-Yeon
원예과학기술지
/
제30권1호
/
pp.73-78
/
2012
KC00256, KC00406, KC00462, KC00463, KC00820, and KC00821, the genetic resources that have previously been reported as moderately resistant to Phytophthora capsici, as well as the line KC01322, a new source of moderate resistance introduced from Laos, were tested against two strains (Pc003 and Pc005) of P. capsici. We also determined the nuclear restorer genotypes of these lines, in regards to their interaction with cytoplasmic male sterility, through crossing the resources with cytoplasmic male sterile Punggok-A (Srfrf) and determining the fertility of the $F_1$ hybrids. The studied lines exhibited a low level of resistance to both the strains of P. capsici compared to highly resistant CM334, but their response was fairly consistent for both P. capsici strains. KC00406, KC00462, KC00463, and KC01322 produced stable, male fertile $F_1$ plants indicating that they are restorers with genotype N(S)RfRf. KC00821 produced male sterile $F_1$ plants and was identified as a maintainer with genotype Nrfrf. The $F_1$ plants of the KC00820 cross, however, set a few male fertile flowers in the greenhouse at seedling stage, then became male sterile after being transplanted to the plastic greenhouse soil in May and remained so to the end of the growing season. Therefore, KC00820 is an unstable maintainer with genotype Nrfrf. The moderate resistance exhibited by these genetic resources may be integrated into breeding programs aimed at promoting higher levels resistance via recurrent selection or hybridization.
Located in the southwestern part of Korea, the Yong San Gang river flows generally northeast to southwest, and because of the specific location, topography and climate, the basin area is subject to recurrent drought and flood damages. To eliminate the cause of such damages and ensure an increase in the farm income by means of effective irrigation supply and increased cropping intensity, efforts are being made to speed up implementation of an integrated agricultural development project which would include construction. of an estuary dam and irrigation facilities as well as land development and tidal reclarnation. In formulating a basin development project plan, it is necessary to study a series of long-term runoff data. The catchment area at the proposed estuary damsite is 3,471$\textrm{km}^2$ with the total length of the river channel up to this point reaching 138km. An analysis of runoff in this area was carried out. Rainfall was estimated by the Thiessen Network based on records available from 15 of the rainfall observation stations within the area. Out of the 15 stations, Kwang Ju and Mok Po stations were keeping long-term precipitation records exceeding some 60 years while the others were in possession of only 5-10 years records. The long-term records kept by those stations located in the center of the basin were used as base records and records kept by the remaining stations were supplemented using the coefficient of correlation between the records kept by the base stations and the remainder. The analyses indicate that the average annual rainfall measured at Kwang Ju during 1940-1972 (33 years) amounts to 1,262mm and the areal rainfall amounts to 1,236mm. For the purpose of runoff analysis, 7 observatories, were set up in the middle and lower reaches of the river and periodic measurements made by these stations permitted analysis of water levels and river flows. In particular, the long-term data available from Na Ju station significantly contributed to the analysis. The analysis, made by 4-stage Tank method, shows that the average annual runoff during 1940-1972 amounts to 2,189 million ㎥ at the runoff rate of 51%. As for the amount of monthly runoff, the maximum is 484.2 million ㎥ in July while the minimum is 48.3 million ㎥ in January.
언어에서 단어가 차지하는 중요성은 매우 크다. 그럼에도 불구하고 단어를 구성하 는 음운론적, 형태소론적 요소에 관한 계산적 연구는 그리 많지 않다. 대개의 전통적 언어학 이론은 추상적인 기저구조와 일련의 명시된 규칙들을 가정함으로 해서 형태음 운현상을 설명한다. 그러나 이러한 접근방법은 (1) 기저구조의 가정, (2) 규칙의 발 견, 그리고 (3) 규칙간의 상호관계 등에서 문제점을 내포하고 있다. 본 연구는 인공신 경망이 단어를 구성하는 음소열과 그 단어의 의미를 학습하는 과정에서 규칙은 생겨난 다는 가정에서 시작한다. 다양한 국어의 형태음운현상에 대한 실험결과는 인공신경망 이 규칙이나 기저구조의 도움없이 형태음운현상을 학습할 수 있음을 보여준다.
Backcross breeding is the method most commonly used to introgress new traits into elite lines. Conventional backcross breeding requires at least 4-5 generations to recover the genomic background of the recurrent parent. Marker-assisted backcrossing (MABC) represents a new breeding approach that can substantially reduce breeding time and cost. For successful MABC, highly polymorphic markers with known positions in each chromosome are essential. Single nucleotide polymorphism (SNP) markers have many advantages over other marker systems for MABC due to their high abundance and amenability to genotyping automation. To facilitate MABC in hot pepper (Capsicum annuum), we utilized expressed sequence tags (ESTs) to develop SNP markers in this study. For SNP identification, we used Bukang $F_1$-hybrid pepper ESTs to prepare a reference sequence through de novo assembly. We performed large-scale transcriptome sequencing of eight accessions using the Illumina Genome Analyzer (IGA) IIx platform by Solexa, which generated small sequence fragments of about 90-100 bp. By aligning each contig to the reference sequence, 58,151 SNPs were identified. After filtering for polymorphism, segregation ratio, and lack of proximity to other SNPS or exon/intron boundaries, a total of 1,910 putative SNPs were chosen and positioned to a pepper linkage map. We further selected 412 SNPs evenly distributed on each chromosome and primers were designed for high throughput SNP assays and tested using a genetic diversity panel of 27 Capsicum accessions. The SNP markers clearly distinguished each accession. These results suggest that the SNP marker set developed in this study will be valuable for MABC, genetic mapping, and comparative genome analysis.
컨셉넷은 일반상식을 노드(개념)와 에지(관계)로 표현해 놓은 그래프 형태의 지식 베이스이다. 완전한 지식 베이스를 구축하는 것은 매우 어려운 문제이기 때문에 지식 베이스는 미완결된 형태의 데이터를 담고 있는 경우가 많다. 불완전한 지식을 담고 있는 지식 베이스로부터의 추론 결과는 신뢰하기 어렵기 때문에 지식의 완결성을 높이기 위한 방법이 필요하다. 본 논문에서는 신경 텐서망을 이용하여 컨셉넷의 지식 미완결성 문제를 완화해 보고자 한다. 컨셉넷에서 추출한 사실주장(assertion)을 이용하여 신경 텐서망을 학습시킨다. 학습된 신경 텐서망은 두 개의 개념 정보를 입력으로 받고, 그 두 개념이 특정 관계로 연결될 수 있는지를 나타내는 점수값을 출력한다. 이와 같이 신경 텐서망은 노드들의 연결 차수(degree)를 높여, 컨셉넷의 완결성을 증대시킬 수 있다. 본 연구에서 학습시킨 신경 텐서망은 평가데이터에 대해서 약 87.7%의 정확도를 보였다. 또한 컨셉넷에 연결이 없는 노드 쌍에 대하여 85.01%의 정확도로 새로운 관계를 예측할 수 있었다.
본 논문은 분산자원 집합 거래시장의 활성화와 에너지 관리의 중요성이 증가되면서 에너지 관리 모니터링 기술로서 합산된 전체 전력으로부터 각각의 가전제품의 전력을 찾아내는 비 침입 부하 모니터 기법을 제안한다. 본 논문에서는 데이터 전처리를 통해 각 가전제품들의 power on-off상태가 나오도록 한다. 이러한 데이터를 LSTM을 모델로 사용하여 각 가전제품들의 power on-off 상태를 예측한다. 예측한 상태들을 데이터 후처리를 한 후, 실제 상태들과 비교하여 정확도를 측정한다. 본 논문에서는 전자제품의 개수, 데이터 후처리 방법과 Time step size를 다르게 하여 정확도를 측정하여 비교한다. 전자 제품의 개수가 6개이고, Round함수로 데이터 후처리 방법을 사용하고, Time step size는 6으로 설정하였을 때, 가장 높은 정확도가 나온 것으로 측정되었다.
부동산 시장 분석에 있어 기본이 되는 정량적 데이터는 부동산 가격 지수이다. OECD와 같은 국제기구에서는 국가별 부동산 가격 지수를 공표하고, 한국부동산원에서는 광역시 단위와 시군구 단위의 지수를 산출한다. 그런데 공간단위를 시군구보다 정교한 동단위, 아파트 단지 단위로 설정하는 경우, 여러 문제점을 맞이하게 된다. 대표적인 문제는 결측치이다. 공간적 범위를 좁힐수록 단위 기간에 따라 거래가 적거나 아예 존재하지 않는 경우가 존재하기에 이 경우에는 지수의 산출이 불가능한 결측치가 발생할 수 있다. 본 연구에서는 지도학습 기반의 머신러닝 기법을 활용하여 특정 범위와 기간에 거래가 존재하지 않아 발생할 수 있는 결측치를 보완하는 기법을 제안한다. 본 모형을 통해 부동산 매매 지수의 실제값이 존재하는 것들의 예측을 통해 그 정확도를 검증하고 결측치가 발생한 것들의 예측도 해 볼 수 있었다.
본 논문에서는 딥러닝 네트워크인 순환신경망(RNN) 모델을 사용해 이동 중인 객체의 이동 경로의 예측을 위한 포지셔닝 기술로서 실내 환경에서 지역 경로 내의 이동 중인 차량의 경로 예측에 연속적인 위치 정보를 이용하여 현재 위치 결정의 오류를 낮출 수 있는 이동 경로 생성 기법을 제안한다. GPS 정보를 사용할 수 없는 실내 환경의 경우 RNN 모델을 적용하기 위해서는 데이터 세트가 연속적이고 순차적이어야 한다. 그러나 Wi-Fi 전파 지문 데이터는 수집 시점의 특정 위치에 대한 특징 정보로서 연속성이 보장되지 않기 때문에 RNN 데이터로 사용할 수 없다. 따라서 RNN 모델에 필요한 순차적 위치의 연속성을 부여하여 실내 환경의 지역 경로를 이동하는 차량의 이동 경로 생성 기법을 제안한다.
Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.
전파 지문 기반의 실내 경로 생성 기술에 RNN 모델을 적용하기 위해서는 데이터 세트가 연속적이고 순차적이어야 한다. 그러나 Wi-Fi 전파 지문 데이터는 수집 시점의 특정 위치에 대한 특징 정보로서 연속성이 보장되지 않기 때문에 RNN 데이터로는 부적합하다. 따라서 순차적 위치의 연속성 정보를 부여해야한다. 이를 위해서는 신호 데이터를 기반으로 각 지역의 구분을 통해 클러스터링이 가능하다. 이때 클러스터 간의 연속성 정보에는 전파 신호의 한계로 이해 실제 이동이 가능한지의 정보를 담지 못한다. 따라서 인접 클러스터간의 이동이 가능한지에 대한 연관성 정보가 필요하다. 본 논문에서는 딥러닝 네트워크인 순환신경망(RNN) 모델을 사용해 이동 중인 객체의 경로 예측을 위한 기술로서 실내 환경에서 경로 생성을 위해 연속적인 위치 정보를 생성하여 객체의 경로 예측 시 발생할 수 있는 오류를 낮추고 예측 경로상의 이동이 불가능한 잘못된 경로 예측을 회피할 수 있는 향상된 이동 경로 생성을 위한 클러스터링 상호간의 연관성을 부여하는 기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.