최근 실시간 스트리밍 플랫폼을 기반으로 한 다양한 멀티미디어 컨텐츠의 수요량과 트래픽 양이 급격히 증가하고 있는 추세이다. 본 논문에서는 실시간 스트리밍 서비스의 품질을 향상시키기 위해서 실시간 스트리밍 트래픽을 예측한다. 네트워크 트래픽을 예측하기 위해 통계적 모형을 활용하였으나, 실시간 스트리밍 트래픽은 매우 동적으로 변화함에 따라 통계적 모형보다는 순환 신경망 기반 딥러닝 모델이 적합하다. 따라서, 실시간 스트리밍 트래픽을 수집, 정제 후 Vanilla RNN, LSTM, GRU, Bi-LSTM, Bi-GRU 모델을 활용하여 예측하며, 각 모델의 학습 시간, 정확도를 측정하여 비교한다.
도로연장의 지속적인 증가와 공용기간이 상당히 경과한 노후 노선이 늘어남에 따라 도로포장에 대한 유지관리비용은 점차 증가하고 있어, 예방적 유지관리를 통해 비용을 최소화 하는 방안에 대한 필요성이 제기되고 있다. 예방적 유지관리를 위해서는 도로포장의 정확한 열화 예측을 통한 전략적 유지관리 계획 수립이 필요하다. 이에 본 연구에서는 고속도로포장 열화예측 모델 개발을 위해 딥러닝 모델 중 가장 보편적으로 많이 사용하는 심층신경망(DNN)과 시계열 데이터 분석에 강점을 가진 순환신경망(RNN)을 사용하였으며, 두 개의 모델의 성능을 비교 분석하여 우수한 모델을 제안하였다. RNN의 Vanishing Gradient Problem을 해결하기 위해 좀 더 복잡한 형태의 RNN구조인 LSTM(Long short-term memory circuits)을 사용하였다. 학습 결과, RNN-LSTM 모델의 RMSE 값이 0.102로 DNN모델보다 낮아 성능이 더 우수하였다. 또한, 대상구간의 시간경과별 평균 도로포장 상태 예측치와 실제 도로포장 상태 실측치의 비교를 통해 RNN-LSTM 모델의 높은 정확도를 검증하였다. 따라서 향후 고속도로 콘크리트 포장의 유지관리 계획 수립시 유지보수 수요 추정을 위한 열화 예측 모델로는 DNN 모델보다 시계열 분석에 강한 RNN-LSTM의 모델을 제안한다.
기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.
기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.
In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.
This paper presents a novel neural based controller which controls the water level of the nuclear power plant steam generator. The controller consists of a model reference feedback linearization controller and a PI controller for stabilizing the feedback linearization controller. The feedback linearization controller consists of a neural network model and an inversing module which uses the neural network model for computing the control input to the steam generator. We chose Piecewise Linearly Trained Network(PLTN) and Recurrent Neural Netwrok(RNN) for an approximator of the plant and used these approximators in calculating the input from the feedback linearization controller. Combining the above two controllers gives a result of better performance than the case which uses only a PI controller Each control result of PLTN and RNN is given.
Coal and Natural gas are two biggest contributors to a generation of energy throughout the world. Most of these resources create environmental pollution while making energy affecting the natural habitat. Many approaches have been proposed as alternatives to these sources. One of the leading alternatives is Solar Energy which is usually harnessed using solar farms. In artificial intelligence, the most researched area in recent times is machine learning. With machine learning, many tasks which were previously thought to be only humanly doable are done by machine. Neural networks have two major subtypes i.e. Convolutional neural networks (CNN) which are used primarily for classification and Recurrent neural networks which are utilized for time-series predictions. In this paper, we predict energy generated by solar fields and optimal angles for solar panels in these farms for the upcoming seven days using environmental and historical data. We experiment with multiple configurations of RNN using Vanilla and LSTM (Long Short-Term Memory) RNN. We are able to achieve RSME of 0.20739 using LSTMs.
Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.
본 논문에서는 RNN 순환 신경망 (Recurrent Neural Network) 모델을 사용하여 스마트 중간층 면진 시스템의 지진 응답 제어 성능을 수치 해석을 통하여 검토하였다. 이를 위해서 지진 하중을 받는 건물의 동적 지진 응답 예측을 위한 RNN 모델을 개발하였다. 보다 실제적인 연구를 위하여 중간층 면진 시스템이 설치된 실존하는 건물인 시오도메 스미토모 건물을 예제 구조물로 선택하였다. 스마트 중간층 면진 시스템은 기존의 납 댐퍼를 대신하여 MR (Magnetorheological) 댐퍼를 사용하여 구성하였다. 그 외 고무 베어링이나 강재 댐퍼는 그대로 사용 하였다. 수치 해석을 통하여 개발된 RNN 모델이 기존의 FEM (Finite Element Method) 모델과 비교해서 매우 정확한 응답을 예측하는 것을 확인할 수 있었다. RNN 모델을 사용하면 자유도가 많은 FEM 모델을 사용한 경우에 비하여 해석 시간을 대폭 줄일 수 있다. 개발된 RNN 모델을 사용한 수치 해석 결과 스마트 중간층 면진 시스템이 기존의 수동 중간층 면진 시스템에 비하여 구조물의 지진 응답을 대폭 저감시킬 수 있는 것을 확인할 수 있었다.
데이터 활용의 다양성이 높아짐에 따라 비관계형 데이터베이스 사용이 증가했으며, 이에 대한 NoSQL 삽입 공격 또한 증가했다. 전통적으로 NoSQL 삽입 공격을 탐지하기 위해 규칙 기반 탐지 방법론이 제안돼왔으나, 이 방식은 규칙의 범위를 벗어나 발생하는 삽입 공격에의 대응이 어렵다는 한계점이 있다. 이에 본 논문에서는 CNN 알고리즘을 이용해 특징을 추출하고, RNN 알고리즘을 활용해 NoSQL 삽입 공격을 탐지하는 기법을 제시한다. 또한, 실험을 통하여 본 논문에서 제시한 모델이 기존의 지도학습을 이용한 가장 우수한 모델보다 정확도는 10%, 정밀도는 4%, 재현율은 14%, F2-score는 0.082만큼 더 높은 비율로 NoSQL 삽입 공격을 탐지함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.