• Title/Summary/Keyword: Recuperator

Search Result 49, Processing Time 0.027 seconds

Development of a Plate-Fin Type Gas Turbine Recuperator

  • Kwak Jae-Su;Yang In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1068-1076
    • /
    • 2006
  • A plate-fin type recuperator for a gas turbine/fuel cell hybrid power generation system was designed, manufactured, and tested. Performance analysis shows that the performance of the system is directly affected by the performance of the recuperator. Therefore, the recuperator should be designed and manufactured carefully, and its performance should be tested and verified before it is integrated into the system. In this paper, the developing procedure including designing, manufacturing, and testing of a cross flow plate-fin type recuperator was presented. Performance test results showed that the design requirements of the recuperator were almost satisfied. Based on the test results, improved design to reduce the size of the recuperator was suggested.

Experimental Study of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터에 대한 실험적 연구)

  • Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myungbae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • In the present study, a recuperator to improve the thermal efficiency of a micro gas turbine is considered. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. From the optimization study as varying design parameters of the recuperator determined from the ideal cycle analysis, the internal structure of the recuperator is determined. The recuperator is made from stainless steel 304. In order to evaluate performance of the recuperator, experimental investigation is performed. The effects of inlet temperature of hot-side of the recuperator on the thermal performance of the recuperator are investigated. As a result, effectiveness of the recuperator obtained from the experiments is well consistent with that obtained from the correlations.

Optimization for the Internal Structure of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터의 내부 형상 최적화)

  • Do, Kyu-Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1178-1185
    • /
    • 2011
  • In the present study, a recuperator is suggested to improve the thermal efficiency of a micro gas turbine. Primary design parameters of the recuperator are determined from the ideal cycle analysis. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. In order to satisfy the design constraints which are the minimum effectiveness and the maximum pressure drop, the optimization for the internal structure of the recuperator is performed with varying the fin spacing and the fin height of offset strip fins. Also the effects of the thermal conductivity of fins and separation plates and the longitudinal heat conduction on the thermal performance of the recuperator are investigated.

A Numerical Simulation for Design of High Temperature Ceramic Heat Exchanger (고온용 세라믹 열교환기 설계를 위한 수치 연구)

  • Park, Kyung-Seo;Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Doog-Hoon;Park, Sang-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.24-28
    • /
    • 2009
  • To improve its efficiency, most of the industrial furnace had been used recuperator. However, commonly used metal recuperator is not suitable under condition of temperature higher than $1000^{\circ}C$. The other hand, ceramic recuperator is able to use in high temperature condition. In the present study, the design program based on the basic heat exchanger design theory, and CFD modelling are applied to ceramic recuperator to verify the design results. Using design program to find the optimum design factor on the variation of recuperator condition. The result of this study are as follows : Thinner fin-plate thickness reduces pressure drop and increases heat-transfer rate, However, thin plate or plate with thin thickness(< 5 mm) is difficult to manufacture, due to limited mechanically strength.

  • PDF

Design of the recuperator for the gas turbine/fuel cell hybrid power generating system (가스터빈/연료전지 혼합발전 시스템의 열교환기 설계)

  • Kwak, Jae-Su;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2105-2110
    • /
    • 2004
  • Plate-fin type recuperators for the gas turbine/fuel cell hybrid power generating system were designed using commercial design software, MUSE. Heat transfer efficiency and total pressure drop in the recuperator were calculated to confirm required recuperator performance. Both counter flow and cross flow type plate-fin recuperators were designed. Results show that the counter flow type has higher efficiency and short core length, but the cross flow type is simpler to construct because the cross flow type does not need additional distributors. Two or three headers for the each recuperator core will be designed and tested to evaluate best header design. The designed recuperators and headers which will be designed later will be constructed, tested, and used in gas turbine/fuel cell hybrid power generating system.

  • PDF

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

High-effectiveness miniature cryogenic recuperator

  • Hwang, Gyu-Wan;Jung, Je-Heon;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.74-79
    • /
    • 2009
  • The performance of cryogenic refrigerator greatly depends on the effectiveness of heat exchanger, which generates major entropy at low temperature. There are numerous types of heat exchanger available, but it is not easy to apply most of them to cryogenic application because the cryogenic heat exchanger must have high effectiveness value as well as small conduction loss in the environment of considerable temperature difference. In this paper, two kinds of heat exchanger are noticeably introduced for high-effectiveness miniature cryogenic recuperator(recuperative heat ex-changer). Also, the flow mal-distribution problem, which is a critical issue of performance deterioration in a high-effectiveness recuperator, is addressed with simplified model, and its alleviation method is discussed.

A Study on the Improvement of Dry Bag Filter Treatment System Regarding harmful gas of Glass Recuperator (유리용해로 가스처리 건식 Bag Filter의 개선에 관한 연구)

  • Lee, Sung-Jin;Seo, Man-Chul
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.9-22
    • /
    • 2008
  • This study was conducted to develop a system that processes harmful gases and dust, which being generated in the production of micro-inorganic fabric. This can be obtained by melt spinning raw materials such as agalmatolite, fluorspar, limestone, silica under high temperature at $1500-1600^{\circ}C$ in a glass recuperator using a dry method by Cyclone Reactor or Envelope Type (ET) type Bag Filter. If the number of the members of Korea Glass Industry Association reaches up to 45, the damage of the harmful gas being generated in recuperator should not be small. In addition, research of existing facilities showed the most of harmful gas treatment facilities which adopt wet treatment or semi-dry treatment process. This was caused the problems for wastewater and the second pollutive materials. Moreover, in the dust collecting facility behind recuperator, it is also problematic that electric dust collector requires enormous initial investment. We have researched various methods to show both economic and efficient new processes for the preventive facilities of recuperator. As the result of the experiments, the removal efficiencies of HF and SOx were 99% and 87%, respectively. Although it was insignificant reaction, a pretty much interesting result that NOx showed an absorption reaction with $Ca(OH)_2$(removal efficiency was more than 25%) was obtained.

A Study on the Heat Transfer Improvement in the Exhaust-Section of Industrial Furnace (산업용로 배기부에서의 열전달 향상에 관한 연구)

  • Pak, Hi-Yong;Cha, Sang-Myung;Han, Chul-Hee
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.47-59
    • /
    • 1992
  • In the concentric tube type recuperator, which is the most typical type of radiation recuperator, installed on the exhaust-secion of industrial furnace, air flows between the adiabatic outer tube and the inner tube in which exhausted gas flows with high temperature. The waste heat of the exhausted gas is transferred to the inner tube, and transferred from the inner tube to the flowing air. The heat transfer by radiation In the concentric tube type recuperator is modeled using spherical harmonics approximation, namely, P-N method and numerically analyzed considering the effect of dynamic flow field. The results are compared with the existing empirical data. In addition, a theoretical method is presented for the analysis of the heat transfer characteristics of a recuperator with a reradiator installed in the inner tube, which causes re-radiant in the inner tube, and the characteristics of the recuperator is analyszed and defined.

  • PDF

Comparison of the Thermal Performance of Recuperators with Corrugated Fins for a 500W Class Micro Gas Turbine Generator (500W 급 마이크로 가스터빈을 위한 파형 휜을 가지는 리큐퍼레이터의 열성능 비교)

  • Do, Kyu Hyung;Kim, Tae Hoon;Han, Yong-Shik;Choi, Byung-Il;Kim, Myung Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.847-856
    • /
    • 2013
  • In this study, thermal performance of recuperators with plain and offset strip fins is investigated to enhance the thermal efficiency of a micro gas turbine. Thermal cycle analysis is conducted to determine major design parameters of a single-pass counterflow recuperator. In order to evaluate the performance of the recuperator, the effectiveness and the pressure drop in the recuperators are chosen as the objective function and the design constraint, respectively. The optimized geometries for internal structure of the recuperators with plain and offset strip fins are obtained with varying the fin spacing and height. From the result, the recuperator with offset strip fins has better thermal performance when the fin spacing, s, is smaller than 1.45mm and the thermal performance of the recuperator with plain rectangular fins is higher than that with offset strip fins in the region of $s{\geq}1.45mm$. In addition, it is found that the entrance region effect and the longitudinal wall heat conduction effect should be taken into account for accurately predicting the thermal performance of the recuperators with both plain and offset strip fins.