• Title/Summary/Keyword: Rectifier efficiency

Search Result 351, Processing Time 0.027 seconds

Characteristic analysis and design of single-phase Vienna rectifiers (단상 비엔나 정류기의 특성 해석 및 설계)

  • Jeong, Garam;Seol, Won-Kyu;Yun, Jin;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.269-270
    • /
    • 2019
  • Vienna rectifier is used for telecom power applications because of its simple structure, high efficiency and high power density. This rectifier is also suitable to obtain a high voltage DC output. This paper describes the analysis and design of a single-phase module of a Vienna rectifier to obtain 750VDC output. The simulation and experimental results are provided to verify the theoretic analysis and design.

  • PDF

Clamp mode forward multi-resonant conveter with synchronous rectifier (동기 정류기를 이용한 클램프 모드 포워드 다중 공진형 컨버터)

  • 안강순;김희준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.112-120
    • /
    • 1997
  • The clamp mode (CM) forward zero voltage switching multi resonant converter (ZVS-MPC) with self-driven synchronous rectifier is studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET piecewise linear model and is compared with the loss at the conventional schottky diode rectification stage of th econverter. From the results of the analysis, it is known that the use fo MOSFETs as a synchronous rectifier reduces the loss at the rectification stage overthe whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validit of the analysis, we have built a 33W(3.3V/10A) CM forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. FRom the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter (LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.

High Efficiency and High Power-Factor Power Supply for LED Lighting Equipment (고효율 고역률 LED 조명장치용 전원공급장치)

  • Jeong, Gang-Youl
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.23-34
    • /
    • 2018
  • This paper presents the high efficiency and high power-factor power supply for LED lighting equipment. The proposed power supply is the single-stage power structure consisted of the full-bridge diode rectifier and flyback converter, and thus the power-factor correction and output voltage regulation are performed simultaneously using only one controller IC and one power semiconductor switch. Furthermore, the proposed power supply reduces the voltage stress and switching loss of main switch using the regenerative snubber, and it improves the system efficiency using the synchronous rectifier. The applied synchronous rectifier is the new voltage-driven type and its operation and construction are simple. In this paper, the operation principle of proposed power supply is explained through the operation analyses of its power-factor correction and main power conversion parts and the operation of synchronous rectifier is described, briefly. Also, a design example of the power circuit of 40W-class prototype is shown and the operation characteristics of proposed power supply are validated through the experimental results of the implemented prototype by the designed circuit parameter.

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

A 13.56 MHz CMOS Multi-Stage Rectifier for Wireless Power Transfer in Biomedical Applications (바이오응용 무선전력전달을 위한 13.56 MHz CMOS 다단 정류기)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • An efficient multi-stage rectifier for wireless power transfer in deep implant medical devices is implemented using $0.18-{\mu}m$ CMOS technology. The presented three-stage rectifier employs a cross-coupled topology to boost a small input AC signal from the external device to produce a 1.2-1.5 V output DC signal for the implant device. The designed rectifier achieves a maximum measured power conversion efficiency of 70% at 13.56 MHz under the conditions of a low 0.6-Vpp RF input signal with a $10-k{\Omega}$ output load resistance.

Two Low-Loss Large Current Rectifiers Based on Low KVA Rating Wye-Connected Autotransformers

  • Meng, Fangang;Man, Zhongcheng;Li, Quanhui;Gao, Lei
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1697-1707
    • /
    • 2018
  • In this paper, two large current rectifiers are proposed based on two wye-connected autotransformers. The requirements of the ideal large current rectifier are analyzed, and it is concluded that the large current rectifier has a higher power density and a higher energy conversion efficiency when it is made up of two three-phase half-wave rectifiers and a wye-connected autotransformer. According to theoretical analysis results, the two novel wye-connected autotransformers are designed to feed two three-phase half-wave rectifiers. The two autotransformers can generate two groups of three-phase voltages with a 60o phase shifting, and their kVA ratings account for 95% and 80% of the load power, respectively. These values are less than those of a double star rectifier at 30% and 46%. From the input mains and output side, the power quality of the proposed rectifiers is the same as that of the double star rectifier. Some experiments validate the correctness of the theoretical analysis.

The Development of Remote Corrosion Monitoring and Control System for Oil Tank by using the High Efficiency CP Rectifier (고효율 전기 방식용 정류기를 이용한 유류탱크의 원 방식 제어 시스템 개발)

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.249-252
    • /
    • 2002
  • Recently, the advanced countries are using the corrosion monitoring system in a chemical plant and an oil tank in order to protect the corrosion because it leads to a big accident, pollution of soil. and lose of money Generally. the owners of the facilities adopt CP(Cathodic Protection) systems to protect the corrosion also. However, a CP system for oil tank was not considered in Korea Moreover they didn't adopted a corrosion monitoring system. In this paper, we have been developed not only the remote automatic corrosion monitoring but also the remote corrosion control system using the high efficiency CP rectifier. This results should be used to operate the CP system effectively and economically. And also it will be possible to extend the expectation life of the Oil tanks.

  • PDF