• Title/Summary/Keyword: Rectangular duct flow

Search Result 84, Processing Time 0.024 seconds

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique (PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

Numerical Simulation of Pseudo-Shock Waves with Different Confinement Parameters (서로 다른 Confinement parameter를 가지는 의사충격파의 전산유동해석)

  • Kang, Kyungrae;Choi, Jong Ho;Song, Seung Jin;Do, Hyungrok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.336-340
    • /
    • 2017
  • When supersonic flow is through an internal duct, there forms a flow structure called pseudo-shock. Pseudo-shock is a result of shockwave-boundary layer interaction(SBLI) and to simulate pseudo-shock correctly, one needs to correctly anticipate not only the strength of the shock but also the boundary layer behavior as well. In this study, pseud-shockwave structure at a rectangular duct will be numerically simulated using dedicated inlet boundary conditions to obtain accurate solution in terms of its structure and pressure rise pattern.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Triangular Ducts with One Side Rib-Roughened (한 측에서만 거칠기가 설치된 삼각덕트의 마찰계수와 열전달)

  • 안수환;이영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.17-23
    • /
    • 2000
  • Experimental investigations were conducted to study the forced convection of fully-developed turbulent flow in horizontal equilateral duct fabricated with the same length and equivalent diameter, but different surface roughness pitch ratio(P/e) of 4, 8 and 16 on the one side wall only. The experiments were performed with the hydraulic diameter based Reynolds number ranged from 70,000 to 10,000. The entire bottom wall of the duct was heated uniformly and the other surfaces were thermally insulated. To understand the mechanisms of the heat transfer enhancement, measurements of the heat transfer were done to investigate the contributive factor of heat transfer promotion, namely, the fin effect. And the results were compared with those of previous investigations for similarly configured channels, at which they were roughened by regularly spaced transverse ribs in the rectangular and circular channels.

  • PDF

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Lee Dong Hyun;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

Effect of Rib Height on Turbulence and Convective Heat Transfer (리브의 높이가 난류 및 열전달특성에 미치는 영향)

  • Nine, Md.J.;Kim, S.J.;Jeong, H.M.;Chung, H.S.;Rahman, M.Sq.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.30-37
    • /
    • 2012
  • Effect of rib heights is found as significant parameter to enhance convective heat transfer performance under laminar and low turbulent regime. Circular ribs with different ribheight to channel height ratios, e/H = 0.05, 0.1, 0.15, are fabricated over the copper substrate respectively in a rectangular duct having 7.5 cross sectional aspect ratio. Only one rib pitch to rib height ratio (P/e = 10) has been chosen for all different height ribs. The result shows that the arithmetic average of turbulence intensity decreases with decreasing roughness height calculated between two ribs under laminar and low turbulent region. It occurs because the area of recirculation and reattachment zone also decreases with decreasing rib height. Optimum thermal enhancement factor is derived by 0.1 rib height to channel height ratio under low turbulent region but 0.15 rib height to channel height ratio gives maximum subjected to laminar flow.

Acoustic modeling of an air cleaner filter in the engine intake system (자동차 흡기계 공기 여과기 필터의 음향학적 모델)

  • Ih, Jeong-Guon;Kang, Jang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.114-117
    • /
    • 2006
  • The air filter in engine intake system has a function of filtrating the dirt in the scavenging air as well as attenuating the noise. The noise attenuation within the air cleaner filter, however, has been regarded as negligible by the field engineers. In this paper, for the analysis of the acoustical performance of air filter, an acoustical model was suggested and the characteristics of air filter system were investigated. Fibrous structure of the filter element was modeled as a micro-perforated panel using the flow resistivity and porosity. The pleated geometry of the filter element was modeled as two coupled ducts that have permeable walls, in which each duct area was assumed being constant. Using such simplified geometry, a mathematical model was developed for the sound propagation within a narrow duct system. Visco-thermal effect was considered in modeling the sound propagation through such tubes; the filter box was modeled as a rigid rectangular box. By combining two models, a four-pole transfer matrix was derived. For the validation purpose, transmission loss was measured for a plastic rectangular box containing an air filter. A noticeable effect of the air filter element was observed by including the filter into the box. Comparing the predicted and measured data, we found that the predicted TL agrees well with experimental results, in particular, in magnitude and frequency at TL troughs.

  • PDF