• Title/Summary/Keyword: Rectangular distribution

Search Result 486, Processing Time 0.023 seconds

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

Optical Characteristics of LGP with Nanometer-patterned Grating (나노미터 패턴 회절격자 도광판의 광특성)

  • Hong, Chin-Soo;Kim, Chang-Kyo;Lee, Byoung-Wook;Lee, Myoung-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.353-360
    • /
    • 2008
  • The LGP with nanometer structures resulted in enhancement of optical efficiency. Its fundamental mechanism is to recycle the polarized light via one round-trip through QWP(Quarter-Wave Plate) but the maximum efficiency to reach with this method is limited up to 2. To get the larger efficiency than this limited one a LGP with nanometer-patterned grating is suggested. For its optimum design the computer simulation is performed and suggests a grating that the spatial frequency between adjacent patterns is 500nm, its height 250nm, duty cycle 50%, and its cross section is rectangular. On the basis of simulation results the LGP with nanometer-patterned grating is fabricated and its optical properties such as angular intensity distribution and CIE color coordinates are characterized. The angles of transmitted light are nearly the same as the results expected from the generalized Snell's law. Thus the Mathematica code, developed in this experiment, will be applied to designing the optimized LGP. The LGP with nanometer-patterened grating shows the enhancement of transmitted intensity distribution up to 4.9 times.

Analysis of Filling in Injection Molding with Compressibility (압축성을 고려한 사출성형 충전과정에 관한 연구)

  • Han, Kyeong-Hee;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.735-745
    • /
    • 1997
  • In this study, the compressibility of resin was considered in filling analysis to account for the possible packing type flow. A numerical simulation program employing a hybrid finite element/finite difference scheme was developed to solve Hele-Shaw flow of the compressible viscous fluid at non-isothermal conditions. To advance the melt front, a control volume approach was adopted. Thin complex 3-D shapes of cavities, runners, and sprues were discretized by employing triangular, cylindrical and/or rectangular strip elements. Mass conservation was applied to each control volume to solve for the pressure distribution. Directly applying a constant mass flow rate at the inlet removes calculation of the apparent pressure boundary conditions, resulting in better simulation condition. The Cross model was used to model viscosity and the Tait equation was employed to represent density as a function of temperature and pressure. The validity of the developed program was verified through comparisons with available data in the literature and the effect of compressibility on the pressure distribution was discussed. To reduce computation time, 1-D and 2-D elements were used instead of applying triangular elements and the numerical results were compared to each other.

A Study on the Dose Distribution of Various Field and Penumbra Shield in the Telecobalt-60 (코발트-60의 조사야(照射野) 변형(變形) 및 반음영(半陰影) 차폐(遮蔽)효과에 따른 선량분포(線量分布)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Hye-Kyong
    • Journal of radiological science and technology
    • /
    • v.8 no.2
    • /
    • pp.71-72
    • /
    • 1985
  • This study was performed on the dose distribution of various field size and the effect of penumbra shield in the telecobalt unit. The results obtained are as follows. 1. Errors of the light and ${\gamma}-ray$ field size was below the regulation as 0.52 percentage. 2. The coefficient of field area was increased with the larger field area, and this coefficient was showed the more difference in larger SSD. 3. The rectangular field areas, which were described by level of the same percentage depth does, were decreased with the more elongation factor. At the same elongation factor, the compensating factor was decreased with the larger field size. 4. The lead block or extension collimator was able to shield r-ray exposure of outside field size from 50 to 80 percentage. 5. On the matching adjacent fields, while the gap between beam edges are contacted, that overlapped beam edges indicated up to 140 percentage, and while the gap was 1 cm, it could be reduced to 90 Percentage. The lead-libocking on the overlapped area was more effective to lower dose, as 80 percentage in this case. 6. Percentage depth dose of various trimming field sizes were increased linearlly according to area 1 perimeter size, but the center split field size did not maintain linearlly.

  • PDF

An Analytic Solution to Sloshing Natural Periods for a Prismatic Liquid Cargo Tank with Baffles (내부재가 설치된 직육면체 화물창 내의 Sloshing 고유주기 산정)

  • Shin, Jang-Ryong;Choi, Kyung-Sik;Kang, Sin-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.16-21
    • /
    • 2005
  • In the design of super tankers or LNG carriers, which transport a large amount of liquid in the cargo tanks, the structural d11mage due to liquid sloshing is an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this study, the sloshing natural periods of a baffled tank, often installed to reduce liquid motion, is analyzed. A variational method is adopted to estimate the sloshing natural periods for a prismatic cargo tank with baffles of arbitrary filling depth of liquid; the results are compared with Lloyd's Register regulations on sloshing periods. In this study, using an effective liquid-fill-depth concept, sloshing periods for a baffled tank can be expressed by the same form as rectangular prismatic tanks without baffles. In contrast to Lloyd's Register regulations, which can be applicable only to cargo tanks with constant baffle size and distribution, the present results can be applicable to cases of variable baffle size and distribution.

Unsteady Analysis of Hydraulic Behavior Characteristics in Water Treatment System Using CFD Simulation (CFD를 이용한 정수처리 공정 내 유량변동시 수리흐름 해석에 관한 연구)

  • Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flowrate from each process abruptly. Since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. In order to investigate the characteristics of hydraulic behavior for rectangular sedimentation basin in water treatment plant, CFD(Computational Fluid Dynamics) simulation were employed. From the results of both CFD simulations, it was confirmed that time taken for the follow-up processes by the fluctuation in intake well can be estimated by the propagation velocity of surface waves. Also, it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes. In the case of inlet flowerate being increased sharply, local velocity within sedimentation basin appeared as wave pattern and increased due to convection current. Also, it could be observed that vortex made local velocity in the vicinity of bottom rise.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

Analysis of the Stedy and Unsteady Heat Conduction in the Cylinder Block Attached with Rectangular Fin (직사각형 휜이 부착된 실린더 블럭의 정상 및 비정상 열전도 해석)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1254-1263
    • /
    • 1990
  • The temperature distribution and heat flux of the inner cylinder wall of a 4-cycle turbocharged gasoline engine were calculated by a 2-dimensional coordinate transformation. Boundary conditions of the inner wall of the cylinder were taken from the results of diagnostic engine simulations. Results show that the ununiformity of inner wall temperature of the cylinder black can be reduced by a proper choice of the thickness of fin and the distance between two cylinder blocks.

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.

On the Two-Dimensional Hydrodynamic Pressure on the Hull Surface of the Chine-Type Ship in Vertical Vibration (Chine형(型) 선체(船體)의 상하진동시(上下振動時) 선체표면(船體表面)에 작용(作用)하는 유체압력(流體壓力)에 관(關)한 고찰(考察))

  • Keuk-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.2
    • /
    • pp.11-16
    • /
    • 1969
  • To grasp the characteristics of hydrodynamic pressure distribution on the hull surface of the chine-type ship in vertical vibration of high frequency the hydrodynamic pressure on the surface of two dimensional cylinders of the curvilinear-element section with chines is investigated in comparison with those of the rectangular section, of the circular section, of the elliptical section, of the triangular section, and of the Lewis form of hypotrocoidal character. The results on the chine-type show markably different characteristics in the pressure distribution from the others.

  • PDF