• Title/Summary/Keyword: Rectangular Tube

Search Result 175, Processing Time 0.025 seconds

A Study on Flow Characteristics of ERF Between Two Parallel-Plate by Using PlV (평형평판 간극사이에서 PIV를 이용한 ER유체의 유동특성에 관한연구)

  • Jung Wan-Bo;Park Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2006
  • An experimental investigation was performed to study the characteristics of ER(Electro-Rheological) fluid flow in a horizontal rectangular tube with or without D.C voltage. To determine some characteristics of the ER flow, 2D PIV(Particle Image Velocimetry) technique is employed for velocity measurement. This research found the mean velocity distribution with 0kV/mm, 1.0kV/mm and 1.5kV/mm for Re = 0, 0.62, 1.29 and 2.26. When the strength of the electric field increased, the cluster of ERF are clearly strong along the test tube and the flow rate decreased. In this study, the rheology of ER fluid stagnating or flowing through a dispersion meter will be investigated by PIV method. And then the ER effect, which appears at the ER valves and their appliance will be visualized.

Pressure Drop and Heat Transfer Characteristics of Internal Flow of the Rectangular Tube for Automobile Heat Exchanger (차량용 열교환기 사각관 내부 흐름에서 압력강하 및 열전달 특성)

  • Kang, Hie-Chan;Jun, Gil-Woong;Kim, Kwang-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.489-492
    • /
    • 2006
  • The present work was performed to investigate the thermal and hydraulic characteristics of flow inside the plain and turbulator flat tubes for the automobile application. The pressure drop and heat transfer coefficient at laminar, transition and turbulent regimes were studied experimentally and numerically. The flow transition was confirmed by flow visualization and quantitative data. It is proposed equations for the friction and heat transfer coefficient in the fully developed laminar flow inside rectangular tube as function of aspect ratio.

  • PDF

Stress Analysis of Bogie frame adopting rectangular tube shaped transom (사각 단면 형상 트랜섬을 적용한 대차프레임 구조해적)

  • 이광일
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.60-66
    • /
    • 1999
  • Generally, bogie frame for EMU consists of side frame, crossbeam and transom. Among the main frame structure which has been produced in our company, crossbeam and transom have been made of circular shaped tube. In this un, welding process between circular crossbeam and circular transom is complicated and takes much time. To improve this problem, new rectangular tube shaped transom is adopted. In this paper, the processes and results of finite element analysis are described, which was carried out to evaluate the strength of new bogie frame according to UIC, JIS, KS code. FEA results show that the new bogie frame has sufficient static and fatigue strength. Comparing the FEA results with load test results should follow and further study for evaluating the fatigue strength will be pursued in future.

  • PDF

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Experimental Study on the Air-Side Heat Transfer Characteristics of a Spirally-Coiled Circular Fin-Tube Heat Exchanger According to Geometric Parameters (형상변수에 따른 나선형 원형핀-튜브 열교환기의 공기측 열전달 특성에 관한 실험적 연구)

  • Kang, Tae-Hyung;Lee, Moo-Yeon;Kim, Yong-Chan;Yun, Sung-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.515-522
    • /
    • 2010
  • The objective of this study is to investigate the air-side heat transfer characteristics of a spirally-coiled circular fin-tube heat exchanger for various geometric parameters under non-frosting conditions. The heat transfer characteristics of the heat exchanger were analyzed with respect to heat exchanger geometries, and then, the characteristics were compared with those of rectangular-plate fin-tube heat exchangers with discrete fins. The heat transfer coefficient increased with a decrease in the number of tube rows and an increase in the fin pitch. The optimum length of the L-foot was 2.7 mm. In addition, the heat transfer rate increased with a decrease in the tube pitch and the tube thickness. The heat transfer coefficient of the spirally-coiled circular fin-tube heat exchanger was 24.3% higher than that of the rectangular-plate fin-tube heat exchanger.

Structural Behavior of Beam-to-Column Connections of Rectangular CFT Structures having Different Diaphragm Opening (콘크리트충전 각형강관구조의 다이아프램 개구부 형상에 따른 기둥-보 접합부 구조적 거동)

  • Kim, Ki Hoon;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • The steel tube of Concrete-Filled Tube(CFT) confines the concrete and the concrete restrains the buckling of the tube, The objective of this study is to investigate the influences of the opening shape of the through diaphragm in case of the rectangular CFT column-to-beam connection through the structural experiment. The experiment results are compared with analysis results obtained by using the FEM program. These results are shown that strength of the rectangular CFT column-to-beam connection have similar structural performance regardless of the opening shape if opening areas of the through diaphragm are same. Also in case the connection area/shape of the through diaphragm and the flange of H-beam are similar, it was ascertained that the bending stress occurred at the beam can be transferred to the column through the diaphragm.

The Flexural Behavior of a Square Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 각형 탄소섬유 튜브 기둥의 휨거동특성)

  • Kim, Hee-Cheul;Hong, Won-Kee;Lee, Hyun-Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of square concrete filled carbon tube (CFCT) columns subjected to constant axial load with the cyclic lateral load. Two parameters, wnding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of rectangular CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of a rectangular CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of rectangular CFCT columns were evaluated by calculating the area of load-displacement envelope curves and load-dispalcement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment was compared to that of reinforced masonry wall for the comparison of existing structural element.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF