• Title/Summary/Keyword: Rectangular Tube

Search Result 175, Processing Time 0.022 seconds

Collapse of Thin-Walled Hatted Section Tubes (박판 상형 부재의 붕괴 특성연구)

  • Kim, C.W.;Han, B.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1994
  • Collapse characteristics of thin-walled hatted section tubes are investigated. The square section members with flanges are substituted by the equivalent rectangular tube. The stiffening effects of flanges are transformed to the restraining plate with the equivalency of buckling strength. The square tubes of single-hatted and double-hatted sections are investigated. The double-hatted section members show symmetric and antisymmetric crushing modes depending on the stiffness of flanges. The single-hatted section members show only symmetric modes. The bifurcation point of the compact crushing modes are investigated by experiments and shown almost same thickness-width ratio of the rectangular tubes. A large maximum crippling strength can be obtained by double-hatted section members with proper flange dimensions.

  • PDF

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber (흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감)

  • Lee Ghi-Youn;Sim Hyoun-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

The Energy Absorption Characteristics of Thin-walled Rectangular Tubes (박판 사각튜브의 에너지 흡수 특성)

  • 김천욱;한병기;원종진;임채홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.83-91
    • /
    • 1996
  • This paper investigates the energy absorption characteristics of thin-walled rectangular tubes. In the compact mode, the crushing process of a thin-walled tube is analyzed into 3 parts by the ratio of outward to inward fold length. The mean crush load and the half-wave folding length are determined by using minimum energy principle. The effective crush distance can be determined when half-wave folding length is known, and the number of folds is derived when crush distance is given. Thus when the crush distance is given, energy absorption capacity can be estimated with mean crush load and number of folds. And the theoretical value is proven experimentally.

  • PDF

Characteristics of Bending Deformation in Aluminum Rectangular Bar by Press Die (알루미늄 각재의 프레스 굽힘 변형 특성)

  • Kim, K.S.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the recent years, the production of light-weight products has become important because of increasing demands for the energy savings through weight reduction. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. Bending characteristics of Al rectangular tube with hollow and solid section has been analyzed by FE analysis in press bending with wing-die. Bending stress is affected by punch stroke and rotation of wing-die. There were different sectional sagging characteristics between the solid rectangle section and the hollow rectangle section.

A Characteristics of Bending Deformation in HallowRectangular Tube by Press Die (중공 각재의 프레스 굽힘 변형 특성)

  • Lee, H.Y.;Kim, K.S.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • In the recent years the using of low-density material such as high-strength Al alloy on the various industries is becoming light-weight. High strength and hollow Al alloy is good material for stiffness and recycling. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. In this study simplified hallow rectangular section of Al alloy is analyzed by FE analysis. Bending stress is affected punching and rotating of wing-die. The analysis of press bending is preformed at first. The elastic recovery value of component and stress distribution acting from the result of the bending angle of three types were obtained. The designed precesses were analyzed by the commercial FE code, Deform-3D. Forming dies for each process were designed and prototypes were manufactured by the verified forming process. Some of the important features of design parameters in the press bending were reviewed.

  • PDF

The Properties of Microwave Propagation in Discharging Plasma (방전에 의한 프라즈마에서의 마이크로파 전파특성)

  • Yang, In-Eung;No, Bang-Hyeon;Kim, Bong-Yeol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 1968
  • In this paper microwave power propagated through the cold plasma was analyzed and measured with respect to the external magenetic flux density. The d. c discharge plasma was in the rectangular waveguide in which two electrode was inserted, and also the glass diseharge tube inserted in the ractangular wavegside. The direction of microwave pro-pagation, the axis of the discharge tube and external magnetic flux were perpendicular to each other. It showed that the attenuation and absorption of micro wave power propagated in the plasma was increased as the magnetic flux density, the discharge current and the pressure of the gas were increased.

  • PDF

The Generation of a Smooth C Extension Surface (부드러운 $C^2$확장 곡면 생성)

  • 김회섭
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.143-147
    • /
    • 2004
  • To design parts satisfying physical property in the continuous region, we do it in the discrete rectangular mesh points. Then we obtain points data from parts design and usually construct the surface using least squares method. In such case, that surface has an oscillation in the ineffective region which is inadequate for physical phenomena or NC machining. To solve both problems simultaneously, we extend the surface smoothly to have small curvature in the extended region. Up to now, we use the least squares method for the parts design in Color Picture Tube or Color Display Tube but in this paper, we use functions which is easily controllable. This surface has no error within the effective region compared to the least squares method.

FE Analysis of Hydroforming Process for Flange Forming (액압 성형 공정 시 플랜지부 형성을 위한 FE 해석)

  • Choi, M.K.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Hydroforming has attracted a great deal of attention in the manufacturing industries for vehicles and transportation systems. Hydroforming technology contributes to weight reduction, increased strength, improved quality and reduced tooling cost. Hydroformed automotive parts used as structure components in vehichle body frame often have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. In this study, hydroforming process for flange forming was proposed. FE analysis to form flanged circular shape and flanged rectangular shape was preformed with Dynaform 5.5. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as tool geometry and hydraulic pressure has been performed and optimized. The results show that flanged automotive parts can be successfully produced with tube hydroforming.

Study on the plastic deformation of a cylinder subjected to localized impulsive pressure (국부충격하중을 받는 원관의 삭성변형에 관한 고찰)

  • ;;Zoo, Young Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1981
  • The effect of axial stress on the plastic deformation of rigid-perfectly plastic cylindrical tube under the impulsive band pressure is investigated. It is assumed that the tube is constructed with the material of Tresca's yield criterion. A closed from sloution is obtained for a rectangular pulse shape of uniform band pressure by using the circumscribed yield surface. The analysis shows that the effect ot exial stress is negligible when the dimensionless axial stress(n$\sub$x/= N$\sub$x/.delta.$\sub$y/H) is less than 0.2 or the dimensionless whdth of band pressure(.xi.=C/.root.RH) is greater than 2, but the effect of axial stress is of considerable importance when the axial stress is greater than 0.3 and the width of band pressure is less than 1.