• 제목/요약/키워드: Rectangular Groove

검색결과 47건 처리시간 0.019초

오일윤활 빗살무늬 저널 베어링에 대한 정특성 및 안정성 해석 (A study on the static and stability characteristics of the oil-lubricated herringbone groove journal bearing)

  • 강경필;임윤철
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.859-867
    • /
    • 1998
  • An oil lubricated Herringbone aroove jounal bearing(HGJB) with eight-circular-profile grooves on the non-rotating bearing surface is analyzed numerically and experimentally. The load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for the various bearing configurations. The onset speed of instability is also examined for the various eccentricity ratios. The configuration parameters of HGJB, such as groove depth ratio, groove width ratio, and groove angle, are dependent on each other because the grooves are generated by using eight small balls rolling over the inner surface of the sleeve with press fit. Therefore, it is not allowed to suggest a set of optimal design parameters such as the one for the rectangular profile HGJB. The overall results from numerical and experimental analysis prove that the circular profile HGJB has an excellent stability characteristics and the higher load carrying capacity than the plain journal bearing.

수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계 (Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type)

  • 박상수;이정민;김병민
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

L형상 프로파일 링롤링 공정의 하부면 그루브 결함 분석 (Analysis of the Bottom Groove in L-shaped Profile Ring Rolling)

  • 오일영;황태우;강필규;문영훈
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.289-295
    • /
    • 2018
  • The profile ring rolling process can realize various ring shapes unlike conventional rectangular cross-sectional ring products. In this paper, the defective groove in the bottom surface of L-shaped ring products was analyzed. Grooves are generated by non-uniform external forces due to profile main roll and initial blank shape. Process parameters such as the motion of dies and working temperature were determined. Mechanism of groove formation was analyzed by FE simulation on the basis of local external forces acting on the blank. Analysis results were similar to the groove actually occurring in the production line. Based on results of the analysis, two solutions were proposed for the groove. The position of the base plate supporting the blank was adjusted and edge length of the main roll was extended to suppress growth of grooves. It has been verified that groove was improved by applying two proposed methods in the shop-floor.

그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화 (CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Groove Pressing 한 Aluminum 3003 판재의 집합조직 및 미세조직의 변화 (Texture and Microstructure in Aluminum 3003 Sheet During Groove Pressing)

  • 김훈동;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2001
  • A simple cold pressing procedure which allows shear deformations on sheet metals is proposed by designing dies with grooves and applied to aluminum 3003 sheets. shear deformation led to the formation of preferred orientation along <100>//RD, and the effect of initial tortures on the formation of shear textures was also studied Rectangular shaped dislocation cells formed in the deformed microstructure and boundaries of dislocation cells gradually rounded with the increased plastic strain. Upon subsequent annealing textures inherited deformation textures. Recrystallized grains consisted of a large number of fully recovered subgrains with well defined boundaries which persisted even after annealing at a higher temperature.

  • PDF

레이저 홈가공에서 편광빔의 다중반사 효과 (Effects of Multiple Reflections of Polarized Beam in Laser Grooving)

  • 방세윤;성관제
    • Journal of Welding and Joining
    • /
    • 제23권2호
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

태양열 집열기용 히트파이프의 열전달 특성에 대한 해석 (Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector)

  • 정경택;배찬효;서정세;김병기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

공동현상을 고려한 소형 정밀 모터용 빗살무늬 저널베어링의 해석 (Analysis of a Hydrodynamic Herringbone-Grooved Journal Bearing in a Small Precision Motor Considering Cavitation)

  • 창동일;장건희
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2680-2687
    • /
    • 2000
  • The Reynolds equation, incorporating Elrods cavitation algorithm, is discretized on a rectangular grid in computational space through coordinate mapping in order to accurately analyze a herringbone grooved journal bearing of a spindle motor in a computer hard disk drive. The pressure distribution and cavitation area are determined by using the finite volume method. Predicted results are compared to experimental data of previous researchers. It was found that positive pressure is developed within the converging section of the bearing and that a cavity occurs in the diverging section. Cavitation has been neglected in the previous analysis of the herringbone grooved bearing. Load capacity and bearing torque are increased due to the increased of eccentricity and L/D and the decrease of the grooved width ratio. The maximum load capacity was found to occur at a groove angle of 30 degrees while bearing torque remains constant due to the variation of the groove angle. The cavitation region is significantly decreased with the inclusion of herringbone grooves. However, the region increases with the increase of the eccentricity, L/D, groove angle and the rotational speed and the decrease of the grooved width ratio.

Design of Structured Surfaces for Directional Mobility of Droplets

  • Osada, Takehito;Kaneko, Arata;Moronuki, Nobuyuki;Kawaguchi, Tomoyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.13-17
    • /
    • 2008
  • This paper deals with the directional mobility of droplets on structured surfaces. Structured surfaces were micro-patterned with rectangular lines and spaces of varying pitch and height in the sub-millimeter range. The material used was polydimethylsiloxane, which is hydrophobic and wettable by oil. First, we studied the effect of the structural design on the sliding angle of pure water or oil through experiments. For pure water droplets, we found that a wider pitch enhanced the directionality. On the other hand, oil droplets spread along the groove because of their low surface tension and strong capillary force. The directionality of the sliding angle of oil droplets was larger than that of pure water, especially when the groove was narrower and deeper. Second, we poured a large amount of liquid on the structure and evaluated the removal rate on the tilted surface. We found that a parallel structure enhanced the liquid mobility for both pure water and oil.