• Title/Summary/Keyword: Rectangular Groove

Search Result 47, Processing Time 0.019 seconds

An Optimum Design of Herringbone Grooved Journal Bearings for Spindle Motor of Hard Disk Drive System (HDD 스핀들용 빗살무늬 저널베어링의 최적설계)

  • ;Y. Muraki;M. Tanaka
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.530-532
    • /
    • 2002
  • This paper presents an optimum design of herringbone grooved journal bearing for spindle motor of hard disk drive (HDD) system. In addition to the conventional “rectangular” groove, various groove profiles are designed. The stiffness and damping coefficients of the oil film and frictional torque are calculated and compared for tile various groove profiles. The “circular”, “valley”, and “reversed saw tooth” grooves do not produce high direct stiffness, since they partly increase the groove depths in the direction of lubricant flow, causing to reduce the pumping action of the bearing. The maximum direct stiffness can be obtained by the “rectangular”, “saw tooth”, and “step” grooves. With the same cross sectional area of the grooves, these three grooves have the same maximum stiffness, damping coefficients, and frictional torque. Among these recommendable grooves, the saw tooth groove may keep its original profile for long, enduring metal-to-metal contact during startup and shutdown.

  • PDF

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector (그루브형 태양열 집열용 히트파이프의 열성능 해석)

  • Hong, J.K.;Suh, J.S.;Byon, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF

A Study on the Sealing Characteristics of O-rings in Gas Pressure Vessel (O-링이 장착된 가스압력용기의 밀봉특성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.51-57
    • /
    • 2003
  • This paper presents the temperature distribution and deformation characteristics of O-ring groove geometry in which is strongly related the sealing performance of pressure vessels. A working gas in pressure vessel may be heated by a heater and pressurized by a gas compressor. Thus, the pressure vessel should keep high Pressure and temperature for a limited working period. For these operation conditions, the working gas in pressure vessels should not leak to the air by two O-rings with a rectangular groove. The FEM computed results indicate that the thermal and mechanical properties of metal sealing material is very important for stopping a leakage of hot gas in a vessel. Based on the results, high thermal conductive and low mechanical strength material is recommended as a metal sealing one. This may improve the sealing characteristics of O-ring sealing mechanism with a rectangular groove, which reduces the sealing gap between a flange and a cylinder and the width of O-ring groove.

  • PDF

A Study on the Optimized Design of O-rings for LPG Filling Unit (LPG 충전노즐에 장착된 O-링의 최적설계에 관한 연구)

  • Kim Chung-Kyun;Kim Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.34-40
    • /
    • 2006
  • This paper presents the optimized design of O-rings with a rectangular groove and dovetails, which are strongly related on the sealing performance of LPG filling unit. The computed results on the optimal design are analyzed by non-linear MARC finite element program with Taguchi method. O-rings with 4 different groove models are analyzed for 3 different elastomeric materials. The design parameters are given to polymer materials, groove depth, groove width, and diameter of O-rings. The FEM computed results showed that the affection ratios of O-ring diameter and material property are the most influential parameter among the groove width, groove depth, and compression ratio. Thus, this paper recommends model III for a rectangular groove and model IV for a dovetail groove with a given gas supply pressure of 1.764 MPa.

  • PDF

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.

Design Optimization and Numerical Study of O-ring using Taguchi Method (다구찌법을 이용한 O-링의 최적설계 및 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.259-265
    • /
    • 2004
  • The sealing performance of O-rings is affected by working conditions such as applied pressure, operation temperature, pre-compressed ratio and material properties. In this paper, a pressurized and compressed elastomeric bi-polymer O-ring in which is inserted into a rectangular groove is analyzed by non-linear MARC finite element program based on the Taguchi experimental method. O-rings with 9 different profile models are analyzed for design parameters that are related to the diameter ratio between outer diameter and inner one of bi-polymer O-ring, compressive ratio, groove angle and groove depth. The calculated FEM results showed that the affection ratio of design parameter dlD, which may control sealing pressure of O-rings, is the most influential parameter among the groove angle, groove depth and compression ratio.

Effects of Groove Shape Dimension on Lapping Characteristics of Sapphire Wafer (정반 그루브의 형상치수가 사파이어 기판의 연마특성에 미치는 영향)

  • Lee, Taekyung;Lee, Sangjik;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.119-124
    • /
    • 2016
  • In the sapphire wafering process, lapping is a crucial operation in order to reduce the damaged layer and achieve the target thickness. Many parameters, such as pressure, velocity, abrasive, slurry and plate, affect lapping characteristics. This paper presents an experimental investigation on the effect of the plate groove on the material removal rate and roughness of the wafer. We select the spiral pattern and rectangular type as the groove shapes. We vary the groove density by controlling the groove shape dimension, i.e., the groove width and pitch. As the groove density increases to 0.4, the material removal rate increases and gradually reaches a saturation point. When the groove density is low, the pressing load is mostly supported by the thick film, and only a small amount acts on the abrasives resulting to a low material removal rate. The roughness decreases on increasing the groove density up to 0.3 because thick film makes partial participations of large abrasives which make deep scratches. From these results, we could conclude that the groove affects the contact condition between the wafer and plate. At the same groove density, the pitch has more influence on reducing the film thickness than the groove width. By decreasing the groove density with a smaller pitch and larger groove width, we could achieve a high material removal rate and low roughness. These results would be helpful in understanding the groove effects and determining the appropriate groove design.

Optimized Design of O-ring Groove in LPG Filling Unit Using Taguchi Experimental Method (다구찌 실험법을 이용한 LPG 충전노즐 O-링 그루브의 최적화 설계연구)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.40-46
    • /
    • 2006
  • In this paper, the optimized design of a rectangular O-ring groove has been analyzed for a maximum Cauchy stress and maximum strain using the Taguchi method. This method may efficiently optimize the design parameters for an O-ring groove of a LPG filling unit. The computed FEM results indicate that the optimized design parameters can only be drawn by nine experimental numbers of iterations when the Taguchi design technique has been employed with a finite element method. This means that the Taguchi design method is very useful for the optimization design of O-ring rectangular groove geometry. Based on the computed FEM results by the Taguchi design technique, the dimensions of a groove geometry are given as h=2.5 mm, d=2.74 mm, c=0.15 mm, and w=3.0 mm. In this study, the initial compression ratio of O-rings is recommended as 8.7% for a gas supply pressure of 18 $kg/cm^2$.

  • PDF