• 제목/요약/키워드: Rectangular Cavity

검색결과 171건 처리시간 0.027초

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity

  • Omer, Ahmed;Mohany, Atef;Hassan, Marwan
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.91-107
    • /
    • 2016
  • Flow-excited acoustic resonance in ducted cavities can produce high levels of acoustic pressure that may lead to severe damage. This occurs when the flow instability over the cavity mouth, which is created by the free shear layer separation at the upstream edge, is coupled with one of the acoustic modes in the accommodating enclosure. Acoustic resonance can cause high amplitude fluctuating acoustic loads in and near the cavity. Such acoustic loads could cause damage in sensitive applications such as aircraft weapon bays. Therefore, the suppression and mitigation of these resonances are very important. Much of the work done in the past focused on the fluid-dynamic oscillation mechanism or suppressing the resonance by altering the edge condition at the shear layer separation. However, the effect of the downstream edge has received much less attention. This paper considers the effect of the impingement edge geometry on the acoustic resonance excitation and Strouhal number values of the flow instabilities in a ducted shallow cavity with an aspect ratio of 1.0. Several edges, including chamfered edges with different angles and round edges with different radii, were investigated. In addition, some downstream edges that have never been studied before, such as saw-tooth edges, spanwise cylinders, higher and lower steps, and straight and delta spoilers, are investigated. The experiments are conducted in an open-loop wind tunnel that can generate flows with a Mach number up to 0.45. The study shows that when some edge geometries, such as lower steps, chamfered, round, and saw-tooth edges, are installed downstream, they demonstrate a promising reduction in the acoustic resonance. On the other hand, higher steps and straight spoilers resulted in intensifying the acoustic resonance. In addition, the effect of edge geometry on the Strouhal number is presented.

비강내 주기유동장의 실험적 해석에 관한 연구 (The experimental research on periodic airflow in human nasal cavity)

  • 김성균;손영락;신석재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1687-1692
    • /
    • 2004
  • CT 사진을 이용하여 살아있는 사람의 비강 형상을 얻고 RP 를 이용하여 모형을 만들고 이 모형 으로 정교한 비강 유로 모형을 제작하였고, 호흡을 정확하게 모사하는 펌프를 만들었다. 사람의 호흡 데이터를 이용하여 캠을 제작하고 대형 피스 톤 펌프를 만들어 사람의 호흡을 정확 하게 모사 하였다. 이를 이용하여 생리적 주기를 갖는 비강 내 유동에 대한 결과를 획득하고 기존의 일정유량 하의 실험결과와 비교 분석하였다.

  • PDF

A Full-Wave Model Analysis on Noise Reduction and Impedance of Power-Bus Cavity with Differential Signaling

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제6권4호
    • /
    • pp.197-202
    • /
    • 2006
  • This paper presents a study on the differential signaling for the rectangular power-bus structure. The full-wave modal analysis method analyzes how the differential-signaling can lower the power-bus resonance noise levels. The methodology is validated by the use of the FDTD method and reference measurements.

마이크로파를 이용한 플라즈마 발생에 관한 연구 (A study on the generating plasma by microwave)

  • 황기웅;이정해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.300-303
    • /
    • 1987
  • A microwave plasma generating system has been designed to study the properties of plasma. A microwave(2.45GHz) generated by the magnetron is transmitted to the cylindrical cavity through the the rectangular wave guide to generate hydrogen plasma. The electron temperature and the plasma density are measured by the Double Langmuir probe. A dilectric such as alumina is heated by the microwave add plasma. The surface temperature varies with the neutral gas pressure.

  • PDF

Natural Convection in Shallow Cavities

  • Bae, Dae-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.158-167
    • /
    • 1998
  • Natural convection heat transfer in a rectangular enclosure is investigated numerically for low aspect ratio(height/width) cavities. Numerical results are obtained for aspect ratios between ${10}^{-2}$ and ${10}^0$, Rayleight numbers from ${10}^3$ to ${10}^7$ and Prandtl numbers from 10$^{-2}$ to 10$^3$. Results are compared with existing analytical and experimental results. A heat transfer correlation is developed to predict the mean Nusselt number as a function of the three governing dimensionless parameters: Rayleigh number, aspect ratio and Prandtl number.

  • PDF

GPS 용 유전체 세라믹 안테나의 설계 (The Design of Dielectric Ceramic Antenna for GPS)

  • 김현철;노용래;김인태;김윤호
    • 한국세라믹학회지
    • /
    • 제33권9호
    • /
    • pp.977-984
    • /
    • 1996
  • This paper analyzes the performance of a rectangular dielectric ceramic antenna by the theoretical cavity model such as input impedance resonant frequency quality factor efficiency and bandwidth. Through a compu-ter simulation variation of the antenna characteristics is found as a function of the antenna parametes. (permit-tivity permeability antenna size etc) Based on the results we propose a new design method for the dielectric ceramic antenna to be employed in Global Positioning Systems.

  • PDF

유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석 (COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

전반사 미러와 방향성 결합기를 이용한 직사각형 링 레이저 (Rectangular ring laser based on total internal reflection mirror and directional coupler)

  • 김두근;최영완
    • 대한전자공학회논문지SD
    • /
    • 제45권8호
    • /
    • pp.17-23
    • /
    • 2008
  • 본 연구에서는 InP 물질의 능동과 수동 광도파로를 포함하는 신개념의 직사각형 링 레이저를 제작하여 그 특성을 측정하고 분석하였다. 직사각형 링 레이저의 구성은 작은 광 손실을 갖는 네 개의 전반사 미러와 세 개의 수동 광도파로로 구성된 방향성 결합기로 되어 있다. 제작된 두 개의 서로 다른 직사각형 링 공진기의 능동 영역의 길이는 250과 $350{\mu}m$이고, 전체 공진기 길이는 각각 580과 $780{\mu}m$이다. 측정된 링 레이저의 문턱 전류는 상온에서 연속 전류를 인가했을 때 38 mA를 얻을 수 있었다. 이때 20 dB 이상의 인접모드 억압비를 갖는 단일 모드 발진 특성을 확인하였다.

방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의 (Transient Simulations of Concrete Ablation due to a Release of Molten Core Material)

  • 김환열;박종화;김희동;홍성완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF