• Title/Summary/Keyword: Reconstruction matrix

Search Result 250, Processing Time 0.035 seconds

Reweighted L1-Minimization via Support Detection (Support 검출을 통한 reweighted L1-최소화 알고리즘)

  • Lee, Hyuk;Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • Recent work in compressed sensing theory shows that $M{\times}N$ independent and identically distributed sensing matrix whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if $M{\ll}N$. In particular, it is well understood that the $L_1$-minimization algorithm is able to recover sparse signals from incomplete measurements. In this paper, we propose a novel sparse signal reconstruction method that is based on the reweighted $L_1$-minimization via support detection.

ISOLATION OF HUMAN ALVEOLAR BONE-DERIVED CELLS AND IN VITRO AMPLIFICATION FOR TISSUE ENGINEERING (조직공학용 사람 치조골세포의 인공증식)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.453-456
    • /
    • 2001
  • Background: Autogenous alveolar bone cell transplantation may be suitable for tissue engineering for alveolar bone reconstruction. This study aimed to isolate human alveolar bone-derived cells (HABDCs) and to evaluate the ability of collagen gels to support HABDC proliferation and differentiation for human alveolar bone tissue engineering applications. Method: Cultures of primary HABDCs were established from alveolar bone chips obtained from 10 persons undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vitro characterization of HABDCs and the in vitro analysis of collagen gels for alveolar bone tissue engineering. Results: Of the 10 attempts made to obtain HABDC cultures, eight were successful. HABDCs expressed the osteoblastic phenotype characterized by alkaline phosphatase activity, osteocalcin expression and the mineralization of the extracellular matrix in vitro. When seeded on collagen gels, HABDCs penetrated into the collagen gel matrices and proliferated inside the gels. Significantly, when HABDCs were embedded into the gels, collagen fibers and mineralization were produced within the gels. Conclusion: This study demonstrates the feasibility of using cultured HABDCs and collagen gels for human alveolar bone tissue engineering applications.

  • PDF

A 95% accurate EEG-connectome Processor for a Mental Health Monitoring System

  • Kim, Hyunki;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • An electroencephalogram (EEG)-connectome processor to monitor and diagnose mental health is proposed. From 19-channel EEG signals, the proposed processor determines whether the mental state is healthy or unhealthy by extracting significant features from EEG signals and classifying them. Connectome approach is adopted for the best diagnosis accuracy, and synchronization likelihood (SL) is chosen as the connectome feature. Before computing SL, reconstruction optimizer (ReOpt) block compensates some parameters, resulting in improved accuracy. During SL calculation, a sparse matrix inscription (SMI) scheme is proposed to reduce the memory size to 1/24. From the calculated SL information, a small world feature extractor (SWFE) reduces the memory size to 1/29. Finally, using SLs or small word features, radial basis function (RBF) kernel-based support vector machine (SVM) diagnoses user's mental health condition. For RBF kernels, look-up-tables (LUTs) are used to replace the floating-point operations, decreasing the required operation by 54%. Consequently, The EEG-connectome processor improves the diagnosis accuracy from 89% to 95% in Alzheimer's disease case. The proposed processor occupies $3.8mm^2$ and consumes 1.71 mW with $0.18{\mu}m$ CMOS technology.

ANTERIOR ESTHETIC RESIN RESTORATION OF INTELLECTUALLY DISABLED CHILD WITH OLIGODONTIA : A CASE REPORT (부분 무치증을 동반한 지적장애 환자의 전치부 심미수복 : 증례보고)

  • Bae, Youngeun;Kim, Jiyeon;Jeong, Taesung
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.12 no.2
    • /
    • pp.66-71
    • /
    • 2016
  • Intellectual disability is accompanied by a high incidence of congenitally absent teeth and supernumerary teeth, and is observed more frequently than are disorders of location and order during delayed eruption, when accompanied by other symptoms. Furthermore, it is associated with a higher occurrence of dental anomalies such as conical teeth, microdontia, and amelogenesis imperfecta. As it is difficult to obtain adequate cooperation from patients with intellectual disabilities, physical restraint and conscious sedation using medication and general anesthesia can be considered. Reshaping of conical teeth with resin composite may be helpful to rehabilitate patients with oligodontia and a conical tooth shape. Diagnostic wax-up and a silicone matrix formed the basis for the successful reconstruction of the anterior teeth. This case describes the treatment of a patient with intellectual disability who had oligodontia and conical-shaped incisors. Under general anesthesia, the patient was treated using direct composite resin restoration.

Regeneration of a Cartilage Tissue by In Vitro Culture of Chondrocytes on PLGA Microspheres

  • Son, Jeong-Hwa;Park, So-Ra;Kim, Hyeon-Joo;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1577-1582
    • /
    • 2006
  • Cartilage tissue engineering has emerged as an alternative approach for reconstruction or repair of injured cartilage tissues. In this study, rabbit chondrocytes were cultured in a three-dimensional environment to fabricate a new cartilaginous tissue with the application of tissue engineering strategies based on biodegradable PLGA microspheres. Chondrocytes were seeded on PLGA microspheres and cultured on a rocking platform for 5 weeks. The PLGA microspheres provided more surface area to adhere chondrocytes compared with PLGA sponge scaffolds. The novel system facilitated uniform distribution of the cells on the whole of the PLGA microspheres, thus forming a new cartilaginous construct at 4 weeks of culture. The histological and immunohistochemical analyses verified that the number of chondrocytes and the amount of extracellular matrix components such as proteoglycans and type II collagen were significantly greater on the PLGA microspheres constructs as compared with those on the PLGA sponge scaffolds. Therefore, PLGA microspheres enhanced the function of chondrocytes compared with PLGA sponge scaffolds, and thus might be useful for formation of cartilage tissue in vitro.

Defect Inspection of the Polarizer Film Using Singular Vector Decomposition (특이값 분해를 이용한 편광필름 결함 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.997-1003
    • /
    • 2007
  • In this paper, we propose a global approach for automatic inspection of defects in the polarizer film image. The proposed method does not rely on local feature of the defect. It is based on a global image reconstruction scheme using the singular value decomposition(SVD). SVD is used to decompose the image and then obtain a diagonal matrix of the singular values. Among the singular values, the first singular value is used to reconstruct a image. In reconstructed image, the normal pixels in background region have a different characteristics from the pixels in defect region. It is obtained the ratio of pixels in the reconstructed image to ones in the original image and then the defects are detected based on the the statistical process of the ratio. The experiment results show that the proposed method is efficient for defect inspection of polarizer lam image.

Experimental Research of Piece-Mold Casting: Gilt-Bronze Pensive Bodhisattva

  • Yun, Yong-Hyun;Cho, Nam-Chul;Doh, Jung-Mann
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.340-356
    • /
    • 2021
  • We have tried the experimental research of lost-wax casting to reconstruct Gilt-Bronze Pensive Bodhisattva; preliminary and reconstruction experiment based on ancient texts. Main object to reconstruct is Korean National Treasure No.83, Gilt-Bronze Pensive Bodhisattva (Maitreya), then we measure alloy ratio and casting method based on the scientific analysis. Other impurities were removed from the base metal components(copper : tin : lead) and their ratio was set to 95.5 : 6.5 : 3 where the ratios for tin and lead were increased by 2.5% each. The piece-mold casting method was used, and piece-mold casting experiments were carried out twice in this study but supplementary research on piece-mold casting was necessary. The microstructure was confirmed to be typical cast microstructure and the component analysis result was similar to that of the prior study. Analysis of the chemical composition is confirmed to copper, tin, lead, and zinc, and the chemical composition of the matrix was 87.8%Cu-7.5%Sn-2.7%Pb-2.1%Zn, and similar to previous experimental research. Also resulted in the detection of small impurity in Zn. Analysis of the mould revealed that the mould was fabricated by adding quartz and organic matter for structural stability, fire resistance, and air permeability. We expect that our research will contribute to provide base data for advanced researches in future.

COST BENEFIT ANALYSIS OF HIGHWAY SYSTEMS

  • Darren Thompson;Don Chen;Nick Walker;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.494-496
    • /
    • 2013
  • Cost-Benefit Analysis (CBA) is a systematic optimization process that allows users to compare different alternatives and to determine if a project is a solid investment. Many state DOTs have included CBA in their pavement management systems (PMSs) to help allocate state funds for maintenance, rehabilitation, resurfacing, and reconstruction of pavements. In a typical CBA, each pavement type has an assigned weight factor which represents the level of importance of this pavement type. To conduct an accurate CBA, it is essential to select appropriate weight factors. Arbitrarily assigning weights factors to pavements can lead to biased and inaccurate funding allocation decisions. The purpose for this paper is to outline a method to develop an ideal set of weight factors that can be utilized to conduct more accurate CBA. To this end, a matrix of all possible weight factors sets was developed. CBA was conducted for each set of weight factors to obtain a population of possible optimization solutions. Then a regression analysis was performed to establish the relationship between benefit and weight factors. Finally, a multi-objective genetic algorithm was applied to select the optimal set of weight factors. The findings from this study can be used by state DOTs to strategically manage their roadway systems in a cost effective manner.

  • PDF

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Utility of Wide Beam Reconstruction in Whole Body Bone Scan (전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성)

  • Kim, Jung-Yul;Kang, Chung-Koo;Park, Min-Soo;Park, Hoon-Hee;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The Wide Beam Reconstruction (WBR) algorithms that UltraSPECT, Ltd. (U.S) has provides solutions which improved image resolution by eliminating the effect of the line spread function by collimator and suppression of the noise. It controls the resolution and noise level automatically and yields unsurpassed image quality. The aim of this study is WBR of whole body bone scan in usefulness of clinical application. Materials and Methods: The standard line source and single photon emission computed tomography (SPECT) reconstructed spatial resolution measurements were performed on an INFINA (GE, Milwaukee, WI) gamma camera, equipped with low energy high resolution (LEHR) collimators. The total counts of line source measurements with 200 kcps and 300 kcps. The SPECT phantoms analyzed spatial resolution by the changing matrix size. Also a clinical evaluation study was performed with forty three patients, referred for bone scans. First group altered scan speed with 20 and 30 cm/min and dosage of 740 MBq (20 mCi) of $^{99m}Tc$-HDP administered but second group altered dosage of $^{99m}Tc$-HDP with 740 and 1,110 MBq (20 mCi and 30 mCi) in same scan speed. The acquired data was reconstructed using the typical clinical protocol in use and the WBR protocol. The patient's information was removed and a blind reading was done on each reconstruction method. For each reading, a questionnaire was completed in which the reader was asked to evaluate, on a scale of 1-5 point. Results: The result of planar WBR data improved resolution more than 10%. The Full-Width at Half-Maximum (FWHM) of WBR data improved about 16% (Standard: 8.45, WBR: 7.09). SPECT WBR data improved resolution more than about 50% and evaluate FWHM of WBR data (Standard: 3.52, WBR: 1.65). A clinical evaluation study, there was no statistically significant difference between the two method, which includes improvement of the bone to soft tissue ratio and the image resolution (first group p=0.07, second group p=0.458). Conclusion: The WBR method allows to shorten the acquisition time of bone scans while simultaneously providing improved image quality and to reduce the dosage of radiopharmaceuticals reducing radiation dose. Therefore, the WBR method can be applied to a wide range of clinical applications to provide clinical values as well as image quality.

  • PDF