• Title/Summary/Keyword: Reconstruction matrix

Search Result 250, Processing Time 0.03 seconds

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

Analysis and Compression of Spun-yarn Density Profiles using Adaptive Wavelets

  • Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.88-93
    • /
    • 2006
  • A data compression system has been developed by combining adaptive wavelets and optimization technique. The adaptive wavelets were made by optimizing the coefficients of the wavelet matrix. The optimization procedure has been performed by criteria of minimizing the reconstruction error. The resulting adaptive basis outperformed such conventional basis as Daubechies-5 by 5-10%. It was also shown that the yarn density profiles could be compressed by over 95% without a significant loss of information.

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

A Comparative Study of CG CryoDerm and AlloDerm in Direct-to-Implant Immediate Breast Reconstruction

  • Lee, Jun Ho;Park, Ki Rin;Kim, Tae Gon;Ha, Ju-Ho;Chung, Kyu-Jin;Kim, Yong-Ha;Lee, Soo Jung;Kang, Soo Hwan
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.374-379
    • /
    • 2013
  • Background To date, various types of acellular dermal matrix (ADM) have been developed for clinical use. AlloDerm is the most familiar type of ADM to most surgeons in breast reconstruction. It is prepared by freeze-drying. CG CryoDerm is the first form of ADM that requires no drying process. Therefore, theoretically, it has a higher degree of preservation of the dermal structures than AlloDerm. We conducted this study to compare the clinical course and postoperative outcomes of patients who underwent direct-to-implant breast reconstructions using AlloDerm and those who did using CG CryoDerm. Methods We performed a retrospective analysis of the medical records in a consecutive series of 50 patients who underwent direct-to-implant breast reconstruction using AlloDerm (n=31) or CryoDerm (n=19). We then compared the clinical course and postoperative outcomes of the two groups based on the overall incidence of complications and the duration of drainage. Results The mean follow-up period was 16 months. There were no significant differences in the overall incidence of complications (seroma, infection, skin flap necrosis, capsular contracture, and implant loss) between the two groups. Nor was there any significant difference in the duration of drainage. Conclusions CG CryoDerm has the merits of short preparation time and easy handling during surgery. Our results indicate that CG CryoDerm might be an alternative allograft material to AlloDerm in direct-to-implant breast reconstruction.

An Improved Reconstruction Algorithm of Convolutional Codes Based on Channel Error Rate Estimation (채널 오류율 추정에 기반을 둔 길쌈부호의 개선된 재구성 알고리즘)

  • Seong, Jinwoo;Chung, Habong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.951-958
    • /
    • 2017
  • In an attack context, the adversary wants to retrieve the message from the intercepted noisy bit stream without any prior knowledge of the channel codes used. The process of finding out the code parameters such as code length, dimension, and generator, for this purpose, is called the blind recognition of channel codes or the reconstruction of channel codes. In this paper, we suggest an improved algorithm of the blind recovery of rate k/n convolutional encoders in a noisy environment. The suggested algorithm improves the existing algorithm by Marazin, et. al. by evaluating the threshold value through the estimation of the channel error probability of the BSC. By applying the soft decision method by Shaojing, et. al., we considerably enhance the success rate of the channel reconstruction.

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

Toxicological Evaluation of Chitosan Cross-linked Collagen-GAG Matrix (CCGM) In vitro and In vivo (Chitosan Cross-linked Collagen-GAG Matrix(CCGM)의 독성학적 고찰)

  • Lee, Hae-Yul;Kim, Dong-Hwan;Cho, Hyun;Ahn, Byoung-Ok;Kang, Soo-Hyung;Kim, Won-Bae
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • Chitosan cross-linked collagen-glycosaminoglyan (CCGM) is an artificial skin substitute made to form a sponge like dimensional matrix. It can be used to facilitate reconstruction of dermal tissue when applied on large wounds such as severe burns. In order to study the toxicological effects of CCGM the cytotoxicity, local irritation and skin sensitization test were carried out according to the standards of ISO 10993. In the cytotoxicity test utilizing LDH and MTT test, both the CCGM and its extract had no toxicity of Balb/c 3T3 cells. The local irritatioin test on rabbit skin demonstrated that CCGM did not promote any harmful when directly applied on skin. In addition, it did not elicit any allergic reaction in the guinea pig maximization test. Based on these results, it is suggested that CCGM is a material without cytotoxicity, local irritation and allergenicity.

  • PDF