• Title/Summary/Keyword: Reconfigurable Antennas

Search Result 25, Processing Time 0.02 seconds

Patent Trends on Reconfigurable Intelligent Surface (지능형 재구성 안테나 특허 동향)

  • Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • To accommodate various mobile communication frequency bands, the study of metamaterial antennas have begun since the mid-2000s to solve the Trilemma problem between antenna gain-occupied bandwidth-size. As an adaptive reconfiguration function is required in a multi-array antenna system since 4G, the metamaterial array antenna using low-power variable elements has been used to change the basic structure of the antenna. Recently, reconfigurable intelligent surface (RIS), which is made of metasurface with reconfigurability, has been studied to effectively cope with the randomly varying radio channels and be used for various purposes such as reflection/transmission/modulation. As a result of RIS-related patent information analysis in this study, it was confirmed that most of the patents are metamaterial antennas and metamaterial array antennas, but the metasurface antenna technology was in the early stages. Particularly, as the intelligent metasurface antenna is in a more initial stage, the investment to R&D of RIS is urgent to secure patent competitiveness in B5G and 6G.

Degrees of Freedom for MIMO Z-Interference Channels with Reconfigurable Antennas in the Absence of CSIT (송신단 채널 정보가 없는 재구성 안테나를 사용한 다중입출력 Z-간섭 채널에서의 자유도)

  • Yang, Heecheol;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.291-298
    • /
    • 2017
  • In this paper, we derive the achievable degrees of freedom (DoF) for multiple-input multiple-output (MIMO) Z-interference channels (Z-IC) with reconfigurable antennas at the receivers, assuming that channel state information is not available at the transmitters. We propose a new linear scheme to align interfering signals and to decode desired signals through the designed preset mode switching pattern of reconfigurable antennas at the receivers. The key idea of our scheme is to use interfering signals as a side information at the interfered receiver by being silent at the corresponding transmitter during some time slots. Consequently, it is shown that the reconfigurable antennas at the receivers can bring a DoF gain if the number of preset modes is greater than the number of RF chains at the receivers.

Planar Frequency-Reconfigurable Monopole Antenna Design (가변 주파수 특성을 갖는 평면형 모노폴 안테나 설계)

  • Kim, Youngkyu;Lim, Joingsik;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1121-1127
    • /
    • 2014
  • In this paper, a planar frequency reconfigurable antenna is proposed with variable capacitors. The proposed one is designed with a planar monopole, and varies resonant frequencies by variable capacitive loading of a varactor diode. The equivalent circuit and electromagnetic(EM) simulation are utilized for the analysis at the variable characteristic design of the antenna, and the same radiation performance. The implemented frequency variable monopole antenna has been verified by comparing prototypes with designed capacitors and ones with biased varactor diodes. The proposed antenna has presented the resonant frequency variations from 2.25 GHz to 2.42 GHz.

Portable Metamaterial Structure Antenna for Dual-Band and Polarization-Reconfigurability

  • Lee, Changhyeong;Han, Dajung;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • This paper presents the design of a palm-sized metamaterial antenna system having reconfigurable polarization as well as dual-band characteristics. Basically, three antennas are laid by 45 degrees in order and excited by a compact metamaterial dual-band power-divider of the in-phase outputs, and the radiated fields of the antennas are mixed to turn the vector of the polarization to another. The validity of the proposed method is verified by observing the in-phase outputs from the odd-numbered power-dividing device for both 900 MHz and 2.4 GHz, and checking the changeable polarization with the antenna gain over 2 dBi for all the polarizations.

A Unit-Cell Varying Pattern Reconfigurable Zeroth-order Resonance Antenna

  • Hyeon-Cheol Ki
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • Reconfiguration and miniaturization of antennas have become key attributes in modern wireless communication systems. Reconfiguration of radiation pattern can alleviate the problems encountered in modern wireless communication systems such as multi-path problems. Physical limitation of miniaturization also can be overcome by using a zeroth-order resonance (ZOR) antenna based on metamaterial. In order to achieve reconfiguration and miniaturization of antennas at the same time, we propose a new pattern reconfigurable zeroth-order resonance (ZOR) antenna that reconfigures the radiation patterns by varying the position and the number of unit cells comprising the antenna. The antenna is fabricated in an equilateral triangular shaped symmetrical structure to increase pattern variety. This structure can easily provide eight different radiation patterns (two omnidirectional and six monopole like patterns).

Performance evaluation using BER/SNR of wearable fabric reconfigurable beam-steering antenna for On/Off-body communication systems (On/Off-body 통신시스템을 위한 직물소재 웨어러블 재구성 빔 스티어링 안테나의 BER/SNR 성능 검증)

  • Kang, Seonghun;Jeong, Sangsoo;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4842-4848
    • /
    • 2015
  • This paper presents a comparison of communication performance between the reconfigurable beam-steering antenna and the omni-directional (loop) antenna during standstill and walking motion. Both omni-directional and reconfigurable antennas were manufactured on the same fabric (${\varepsilon}_r=1.35$, $tqn{\delta}=0.02$) substrate and operated around 5 GHz band. The reconfigurable antenna was designed to steer the beam directions. To implement the beam-steering capability, the antenna used two PIN diodes. The measured peak gains were 5.9-6.6 dBi and the overall half power beam width (HPBW) was $102^{\circ}$. In order to compare the communication efficiency, both the bit error rate (BER) and the signal-to-noise ratio (SNR) were measured using a GNU Radio Companion software tool and user software radio peripheral (USRP) devices. The measurement were performed when both antennas were standstill and walking motion in an antenna chamber as well as in a smart home environment. From these results, the performances of the reconfigurable beam steering antenna outperformed that of the loop antenna. In addition, in terms of communication efficiencies, in an antenna chamber was better than in a smart home environment. In terms of movement of antennas, standstill state has better results than walking motion state.

Graphene Reconfigurable Antenna for GPS and Iridium Applications

  • Salem GAHGOUH;Ali GHARSALLAH
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.203-207
    • /
    • 2023
  • A frequency reconfigurable antenna based on graphene and used for multi-band wireless communications is presented in this article. The proposed antenna, which consists of two radiating rectangular loops with a graphene extension, is analyzed for Global Positioning System (GPS) and Iridium applications. Its operating frequency is tuned through the implementation of a layer of graphene and thereby adjusting the applied gate bias. Furthermore, the results show a novel use of graphene for microwave frequencies while achieving a frequency reconfiguration with an improvement of the impedance matching and the gain. The results also prove the importance of graphene, with its exceptional properties, for a promising future in nano-electronics.

Planar Directional Beam Antenna Design for Beam Switching System Applications

  • Lee, Seok-Jae;Yoon, Won-Sang;Han, Sang-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • In this paper, a planar directional beam-switchable antenna with four orthogonal beam directions is proposed. The proposed antenna is designed with two crossed active elements and two parasitic elements for each direction. The design methodology is described on the basis of the Yagi-Uda method for the active and parasitic elements, respectively. By adjusting the effective electric lengths of the parasitic elements, the roles of a director and a reflector are exchanged with each other. The planar four-way beam-switchable Yagi-Uda antenna is implemented. From the experimental results. The proposed design method is verified for orthogonal radiation beam switching.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

Reconfigurable Beam-Steering Antenna Using Dipole and Loop Combined Structure for Wearable Applications

  • Ha, Sang-Jun;Jung, Young-Bae;Kim, Yong-Jin;Jung, Chang-Won
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • This paper proposes a reconfigurable beam-steering antenna using a bended dipole and a loop. The radiation patterns of the two antennas are cancelled or compensated, and headed towards a specific direction when the dipole and loop antenna are combined at a reasonable ratio. The proposed antenna can steer the beam directions by controlling the operation of two artificial switches. The proposed antenna was manufactured on a PCB (FR-4) and a flexible PCB (polyimide). In the case of the antenna that was fabricated on a PCB, the maximum beam directions were $+50^{\circ}$, $0^{\circ}$, and $-50^{\circ}$ in the azimuth direction using the two artificial switches, and the antenna gain was 1.96 dBi to 2.48 dBi in the operation bandwidth of 2.47 GHz to 2.53 GHz. Also, the antenna was fabricated on a flexible PCB and measured under various bending conditions for wearable applications.