• Title/Summary/Keyword: Recompression Shock

Search Result 6, Processing Time 0.016 seconds

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

Application of Shock Generator to Supersonic Ejector Diffuser System (초음속 이젝터 디퓨져 시스템에서의 충격파 발생기 응용)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.200-203
    • /
    • 2011
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF

A Study of short supersonic ejector with shock generators (충격파 발생기를 적용한 짧은 초음속 이젝터에 관한 연구)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.105-110
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF

Interaction Between an Unstabilized Turbulent Boundary Layer and an Incident Oblique Shock Wave (不安定化된 亂流境界層 과 斜角入射衝擊波 와의 相互作용)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.158-173
    • /
    • 1985
  • An experimental investigation has been made to study the interaction between and incident oblique shock wave and an unstabilized turbulent boundary layer on a solid surface downstream of a porous surface with air injection through the porous surface. The boundary layer upstream of the interaction is unstabilized by the injection and provokes a shock wave which eventually interacts with the unstabilized boundary layer after reflecting from the upper wall of the test section. Three cases having diferent upstream Mach numbers and different shock strengthes are studied. According to the level of the unstabilization, two cases are of attached boundary layers and the other one is of a separated boundary layer. The result shows that the reflected wavey system is composed of the compression wave, expansion wave fan, and recompression wave like the ordinary interaction while the separated boundary layer strengthens the reflected expansion waves. The interactions of the attached boundary layers show a similar tendency of the upstream wall pressure distribution as that of the ordinary interacton but the pressure rise rather decays in the downstream region. In case of the separated boundary layer, the wall pressure continues to rise in the downstream as opposed ot the former cases. This indicates that the interaction region spreads out widely adn the viscous effect of the separated boundary layer smoothens the abrupt pressure increase due to the shock inpingement.

Mixing and Penetration Studies of Transverse Jet into a Supersonic Crossflow (초음속 유동 내 공동을 이용한 수직 분사 혼합 및 연료 침투거리에 관한 연구)

  • Kim, Chae-Hyoung;Jeong, Eun-Ju;Jeung, In-Seuck;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-32
    • /
    • 2008
  • A non-reacting experimental study on a normal injection into a Mach 1.92 crossflow which flows over various geometries(flat plate, small cavity, large cavity) was carried out to investigate the effect of the momentum flux ratio(J). The aft ramp of the cavity advances the increase of the penetration height and the strong two-dimensional shock from recompression region mainly affects the shock structure and mixing layer at the downstream flow. As flow runs downward, the transverse penetration height increases with increasing J(J = 0.9, 1.7, 3.4). However, above some critical ratio, jet penetration height growth with increasing J is not appeared in flow-field. Large scale cavity has a good mixing efficiency but it increases the drag loss in the combustor.

Investigation of Effect of Shape of Pintle on Drag and Thrust Variation (핀틀 형상에 따른 추력 및 항력 변화 연구)

  • Park, Jong-Ho;Kang, Min-Ho;Kim, Joung-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • In this study, the effect of the shape of a pintle(obstacle) on thrust-modulation performance and drag in a pintle rocket was investigated by a cold flow test and by computational fluid dynamics. Pintle movement caused a monotonic increase in the chamber pressure. Thrust generated by the pressure distribution on the pintle body was linearly changed to the chamber pressure, and this thrust was greater than that generated by the nozzle-wall pressure distribution. Because the shock pattern in the nozzle changes with the shape of the pintle body and pressure ratio, the thrust generated by the nozzle-wall pressure is not directly affected by chamber pressure. The drag due to the pintle(obstacle) can be minimized for a fully linear pintle shape, regardless of chamber pressure.