컨텍스트 인식 환경에서 개인화 추천 서비스를 제공하기 위해서는 수집된 컨텍스트 정보를 빠르게 분석하고, 효과적으로 사용자의 목적을 추론할 수 있어야 한다. 그러나 모바일 장비에서 수집되는 컨텍스트는 환경에 따라 데이터의 차이가 발생함으로 인해 기존의 추론 알고리즘을 그대로 적용하기에는 적합하지 않고 모바일 환경에 적합한 효율적인 알고리즘이 필요하다. 본 연구에서는 정보의 누락이나 오류 등으로 인한 손실을 최소화하기 위해 나이브 베이즈 분류기를 사용하여 행동 패턴을 분류하였다. 또한 사용자의 성향을 효과적으로 학습하고 행동 목적을 추론하기 위하여 패턴 매칭 기법을 시용하였다. 제안한 개인화 추천 서비스 시스템을 스마트폰에서 어플리케이션을 추천하는 서비스를 적용하여 정확도를 평가하였다.
This study checks the conceptual definition of domestic book curation which is still in the beginning stage, the necessity of developing service and business, domestic and overseas case of relevant service. Further, the problem of book recommendation service and the difficulty anticipated in the embodiment of service are investigated together and the business model as new IT service is suggested to supplement them. Specifically, the collection of book information and customer information (interest and purchase pattern) and the procedure of mining the collected information and the process of embodying visualization was presented in the sector of service in the first place. Then, the technical transfer of developed solution and the construction cost and the method to impose commission over contents sales are presented in the sector of business. Diverse social and economic effects are expected to realize by developing and utilizing such services, namely, promoting the distribution of excellent book which were kept in dead storage so far due to lack of marketing support, recommendation readers the proper books which are convenient and necessary.
본 연구는 콘도를 이용하면서 느꼈던 선택속성요인이 만족이나 추천 또는 재방문의도에 어떠한 영향을 미치는지를 살펴보았다. 특히 남녀의 성별, 그리고 연령대별 차이를 살펴보았다. 최근 1년 이내에 국내에서 콘도를 이용했던 경험이 있는 고객을 대상으로 한 설문조사를 실시하였고 약 500명의 설문이 분석대상이 되었다. 연구를 위해 제시한 모형을 검정하기 위하여 기초통계분석과 요인분석, 신뢰도 분석, 구조모형분석 등을 SPSS 18.0 및 AMOS 18.0을 활용하였다. 분석결과, 콘도 선택속성요인은 이용자의 만족에는 전반적인 영향을 미치는 것으로 나타났고 만족은 다시 추천이나 재방문에 유의한 영향을 미치고 있었다. 선택속성 성과는 5가지 요인으로 분류되었는데 시설성, 서비스, 상품성, 접근성, 비용성요인 모두 유의하였다. 남녀의 성별과 연령대별로 각각 차이를 나타냈는데, 남녀의 경우 남성은 비용성, 접근성, 서비스요인 순으로 만족에 영향을 미치고 있었으며, 여성의 경우는 상품성이 우선시 되었다. 만족하는 경우 남녀 모두 추천과 재방문에 영향을 미치고 있었으나 여성의 경우가 추천과 재방문에 남성보다 강한 정(+)의 관계를 보였다. 연령대별로 차이가 확연하게 나타났다. 젊은 층인 2~30대의 경우는 서비스요인이 가장 크게 영향을 미치고 있었으며 다음으로 상품성요인이었다. 반면에 40대 이상은 비용성요인이 가장 큰 영향요인이었으며 다음으로 상품성과 시설성요인이었다. 이들 모두 만족하는 경우 추천이나 재방문에 유의한 영향을 미치고 있었으나, 젊은 층이 추천이나 재방문에 대한 영향도가 크게 나타났다. 이 연구결과는 인구통계변인별로 콘도 선택속성의 다양한 요인이 만족이나 추천과 재방문의도에 영향을 주는 것을 밝힌 것으로 기업의 성과향상을 위한 경영 참고자료로 활용이 가능하겠다.
본 연구의 목적은 선행연구에서 도출된 대학도서관 서비스 품질요소를 대상으로 재이용과 추천의향에 영향을 미치는 요인이 무엇인지 구조방정식 모형을 적용하여 분석하고자 하는 것이다. 2020.4.30.부터 2020.5.10.까지 11일간 이용자 그룹(학부생, 대학원생, 교수/강사) 총 127명을 대상으로 재이용과 추천의향에 대한 설문 조사를 실시하였다. 분석 결과는 다음과 같다. '자료'와 '서비스 고객화'는 재이용에 영향을 미치는 품질 차원으로 나타났으며, 재이용은 추천의향에 영향을 미치는 것으로 나타나 '자료'와 '서비스 고객화'가 재이용 뿐만 아니라 추천의향에도 영향을 미치는 것으로 분석되었다. 또한 '서비스 고객화'는 추천의향에 직접적으로 영향을 미치는 요인으로 나타났다. 이를 바탕으로 이용자의 요구가 다변화하고 개인화되고 있는 도서관 환경에서 도서관 서비스와 마케팅에 고객화 개념을 적용하는 방안을 제시하였다.
이 논문은 개인별 개인화 서비스 활용 로그를 추적조사 하여 개인별로 얼마나 많이 추천된 서비스를 사용하였는지 분석하고, 개인화가 적용된 시스템의 서비스 활용도에 영향을 주는 요인이 개인화 서비스 알고리즘외 다른 요인이 있는지 분석하였다. 또한, 분석 내용을 기반으로 단순히 많이 이용하는 서비스 및 콘텐츠를 추천하는 방법에 따른 사용자 이용패턴 분석을 통해 인센티브를 부여하였을 때의 행동변화에 따른 추천방법을 제안한다.
스마트폰을 비롯한 다양한 스마트 디바이스들은 이제 사용자의 일상에서 필수적인 아이템으로 자리 잡았다. 스마트 디바이스 내에 센서정보를 이용하여 사용자의 선호도 및 필요정보를 파악할 수 있으며, 이를 통해 지능적인 서비스 추천이 가능해진다는 의미이다. 본 논문에서 사용자의 상황정보를 토대로 지능적인 서비스 추천을 위한 퓨전(Fusion) 상황인지 모델을 제안하고자 하다. 서비스 추천 모델은 스마트 디바이스로부터 획득한 시간, 장소, 행동 및 디바이스 정보를 중심으로 퓨전 처리과정을 거쳐 사용자 시나리오를 생성된다. 시나리오란 사용자의 상황을 예측하는데 가장 핵심이 되는 단서이며, 본 시나리오에 맞춰 서비스를 제공 및 추천할 수 있다. 이 뿐만 아니라, 콘텐츠의 카테고리와 더불어 콘텐츠 미디어 형식까지도 사용자 맞춤형을 지향한다. 그러므로 본 논문에서 제안하는 퓨전 상황인지 모델은 하이브리드 센싱(Hybrid Sensing)을 이용하였다.
모바일 엣지 컴퓨팅은 폭증하는 모바일 트래픽에 대응하고 다양한 요구사항을 만족시키는 서비스를 제공하기 위해 모바일 엣지 노드에서 다양한 기능을 직접 제공하는 기술이다. 예를 들어 모바일 트래픽 경감을 위한 캐싱이나, 위험감지 서비스 제공을 위한 비디오 분석 등이 모바일 엣지 노드에서 수행될 수 있다. 지금까지 개인화된 서비스를 추천하는 방법이나 구조 등에 대한 많은 연구가 있었지만, 모바일 엣지 컴퓨팅의 특성을 고려한 연구는 없었다. 개인화된 서비스를 제공하기 위해서는 사용자의 컨텍스트 정보를 획득하는 것이 중요하다. 기존 서버단 중심의 개인화된 서비스 모델은 모바일 엣지 컴퓨팅에 적용될 경우 컨텍스트 고립 문제와 프라이버시 이슈를 더욱 심화시킬 수 있다. 모바일 엣지 노드는 컨텍스트 수집이 용이하다는 이점을 가진다. 모바일 엣지 컴퓨팅 환경에서의 또 하나의 주목할 만한 특징은 사용자와 어플리케이션의 상호 연동이 매우 유동적이라는 점이다. 본 논문에서는 모바일 엣지 컴퓨팅의 특징을 반영한 로컬 서비스 추천 플랫폼 구조를 제시하고 컨텍스트 고립 문제와 프라이버시 이슈를 완화할 수 있는 개인화된 서비스 제공 방법을 제시한다.
커피전문점의 마케팅 전략수립과 수행측면에 실질적인 기여를 목적으로 하였다. 또한 대상은 젊은이들의 커피전문점 선호를 근거로 표본으로 선정하였다. IPA Matrix를 통한 세분변수들을 도출하고 각 분면에 위치한 변수들을 이용하여 만족도, 재이용, 추천의도에 유의한 영향을 미치는 변수들을 검증하였다. 표적시장별로 차별화된 마케팅전략이 필요하다는 가정에 따라 마케팅 전략운영 측면에서 유용한 정보를 제공하였다. 또한 커피전문점 서비스품질 요소에 대한 중요도-성취도는 유의한 영향이 미칠 것이다라는 가설을 검증하기 위하여 대응표본 t-test와 중요도-성취도 분석과 회귀분석을 실시하였고, 전반적 만족도와 재이용과 추천의도, 재이용과 추천의도의 관계는 유의한 영향이 미칠 것이다는 가설을 검증하기 위하여 회귀분석을 실시하였다. 연구결과는 커피전문점 서비스품질요소의 중요도-성취도 차이 분석에서 유의한 차이를 보였고 이는 각 기대치가 다르다는 것을 실증적으로 보여 주었다. 또한 중요도-성취도 분석에 나타난 각분사면에 서비스품질 요소와 전반적 만족도와 관계에서 유의한 것과 유의하지 않은 것을 알 수 있었다. 이를 통하여 어떤 서비스품질 요소에 역량을 집중하고 배분할 것인지에 대한 정보를 제공할 수 있었다. 전반적 만족은 재이용과 추천의도에 긍정적으로 영향을 미치므로 만족이 궁극적 목표가 되어야함을 알 수 있었으며 전반적 만족도, 재이용, 추천 의도는 긍정적 영향관계라는 선행연구결과를 재확인 할 수가 있었다.
Journal of Information Technology Applications and Management
/
제29권3호
/
pp.43-55
/
2022
In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.
이동통신 시장의 경쟁이 격화됨에 따라 이미 포화상태에 다다른 음성 서비스보다는 데이터 서비스를 증가시키기 위해 통신사들이 노력하고 있다. 그러나 단말기의 한계로 인해 자신이 원하는 서비스를 검색하는 것이 쉽지 않고, 시간 역시 많이 소모되는 문제점으로 인해 데이터 서비스 시장이 기대한 만큼 성장하지 않고 있는 상황이다. 본 논문에서는 이와 같은 문제점을 극복하기 위하여, 이동통신사에서 보유하고 있는 위치정보와 무선인터넷 이용로그를 기반으로 개인이 처한 상황에 맞게 무선 서비스를 추천하는 개인화 서비스 방안을 제시하고자 한다. 이를 위해 무선통신사의 실제 데이터를 기반으로 기지국의 위치정보와 해당위치에서의 서비스 이용 정보를 이용하여 군집 분석을 실시하고, 이를 기반으로 협업 필터링를 이용한 무선 서비스의 개인화 서비스 방안을 제안한 후 이를 검증하였다. 또한 분류된 군집의 특성을 분석하고, 이를 기반으로 한 무선 서비스 추천 방안을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.