• 제목/요약/키워드: Recommendation Technique

검색결과 227건 처리시간 0.024초

An Approach to Credibility Enhancement of Automated Collaborative Filtering System through Accommodating User's Rating Behavior

  • Sung, Jang-Hwan;Park, Jong-Hun
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.576-581
    • /
    • 2007
  • The purpose of this paper is to strengthen trust on the automated collaborative filtering system. Automated collaborative filtering system is quickly becoming a popular technique for recommendation system. This elaborative methodology contributes for reducing information overload and the result becomes index of users' preference. In addition, it can be applied to various industries in various fields. After it collaborative filtering system was developed, many researches are executed to enhance credibility and to apply in various fields. Among these diverse systems, collaborative filtering system which uses Pearson correlation coefficient is most common in many researches. In this paper, we proposed new process diagram of collaborative filtering algorithm and new factors which should improve the credibility of system. In addition, the effects and relationships are also tested.

  • PDF

Ranking Tag Pairs for Music Recommendation Using Acoustic Similarity

  • Lee, Jaesung;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.159-165
    • /
    • 2015
  • The need for the recognition of music emotion has become apparent in many music information retrieval applications. In addition to the large pool of techniques that have already been developed in machine learning and data mining, various emerging applications have led to a wealth of newly proposed techniques. In the music information retrieval community, many studies and applications have concentrated on tag-based music recommendation. The limitation of music emotion tags is the ambiguity caused by a single music tag covering too many subcategories. To overcome this, multiple tags can be used simultaneously to specify music clips more precisely. In this paper, we propose a novel technique to rank the proper tag combinations based on the acoustic similarity of music clips.

Amazon product recommendation system based on a modified convolutional neural network

  • Yarasu Madhavi Latha;B. Srinivasa Rao
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.633-647
    • /
    • 2024
  • In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.

Web Log Analysis Using Support Vector Regression

  • Jun, Sung-Hae;Lim, Min-Taik;Jorn, Hong-Seok;Hwang, Jin-Soo;Park, Seong-Yong;Kim, Jee-Yun;Oh, Kyung-Whan
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.61-77
    • /
    • 2003
  • Due to the wide expansion of the internet, people can freely get information what they want with lesser efforts. However without adequate forms or rules to follow, it is getting more and more difficult to get necessary information. Because of seemingly chaotic status of the current web environment, it is sometimes called "Dizzy web" The user should wander from page to page to get necessary information. Therefore we need to construct system which properly recommends appropriate information for general user. The representative research field for this system is called Recommendation System(RS), The collaborative recommendation system is one of the RS. It was known to perform better than the other systems. When we perform the web user modeling or other web-mining tasks, the continuous feedback data is very important and frequently used. In this paper, we propose a collaborative recommendation system which can deal with the continuous feedback data and tried to construct the web page prediction system. We use a sojourn time of a user as continuous feedback data and combine the traditional model-based algorithm framework with the Support Vector Regression technique. In our experiments, we show the accuracy of our system and the computing time of page prediction compared with Pearson's correlation algorithm.algorithm.

전자상거래에서의 협업 추천을 위한 고객 프로필 모델 (A Customer Profile Model for Collaborative Recommendation in e-Commerce)

  • 이석기;조현;천성용
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.67-74
    • /
    • 2011
  • 협업 추천은 전자상거래 기업들이 고객별로 개인화 된 상품추천을 하기 위하여 널리 활용하는 추천기법이다. 추천 행위는 고객들이 상품에 대해 가지고 있는 선호도를 분석하고 이를 프로필화 하는 것을 전제로 한다. 전통적인 명시적 평가법은 취급하는 상품이 매우 다양한 전자상거래 기업의 고객들에게 구매활동외에 추가적 부담을 준다는 점에서 한계를 가진다. 따라서 고객의 개입 없이 간접적으로 선호도를 파악할 수 있는 묵시적 평가법이 보다 바람직하다고 볼 수 있는데, 여기에도 추정된 선호도의 지표화에 주로 사용하는 카디널 척도가 추정 오차를 증가 시킨다는 점에서 문제점이 있다. 따라서 본 연구에서는 이러한 문제의 개선을 위해 웹 마이닝과 사전식 컨센서스 기법에 근간하여 서열 척도 기반의 고객 프로필을 생성, 활용하는 협업 추천 기법을 제안하고자 한다. 실제 온라인 쇼핑몰의 거래 데이터를 이용한 실험을 통해 제안된 기법의 우수성을 입증 하였다.

협업적 여과와 다양성, 내용기반 여과를 혼합한 추천 시스템 (Combining Collaborative, Diversity and Content Based Filtering for Recommendation System)

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • 지능정보연구
    • /
    • 제14권1호
    • /
    • pp.101-115
    • /
    • 2008
  • 일반적으로 혼합 추천 시스템(hybrid recommender system)이란 협업적 여과 방법(collaborative filtering)을 다른 기술들과 결합하여 사용하여 사용자가 원하는 정보를 손쉽게 찾을 수 있도록 도와주는 시스템이다. 협업적 여과 방법과 결합된 혼합 시스템은 대체로 내용이 유사한 아이템들이 추천 되어 전반적인 아이템 추천 성능 및 새로이 추가된 아이템에 대한 추천의 질이 떨어지는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 다양성(diversity)을 고려한 새로운 혼합 추천 시스템을 제안한다. 제안된 시스템에서는 첫 번째 단계로 협업적 여과 방법으로부터 추천된 아이템들 간의 비유사도를 측정한다. 두 번째 단계로는 첫 번째 단계에선 추천된 비유사도가 높은 아이템들을 내용 기반의 여과 방법(content-based filtering)에 적용하여 새로운 아이템에 대한 추천 성능을 향상 시킨다. 제안된 방법의 성능 평가를 위해 movielens 데이터를 이용하여 기존의 내용기반 추천 시스템 및 단순 혼합 시스템과 비교 평가하였다. 실험 결과 제안된 방법이 내용기반 추천 시스템 및 단순 혼합시스템보다 높은 추천 성능을 보였다.

  • PDF

사용자 추천을 위한 교육용 동영상의 빅데이터 분석 기법 비교 (Big Data Analysis Method for Recommendations of Educational Video Contents)

  • 이현섭;김진덕
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1716-1722
    • /
    • 2021
  • 최근 동영상 콘텐츠 제공 서비스는 그 용량이 매우 증가하여 사용자 추천의 중요성이 증가하고 있다. 그리고 이러한 콘텐츠는 다양한 특성을 내포하고 있어 사용자가 지정한 키워드만으로 그 콘텐츠의 특징을 제대로 표현하기 어렵다. 그러므로 사용자가 정의한 키워드를 이용하는 기존의 추천 시스템은 개체의 특성을 제대로 반영하지 못하는 한계가 있다. 본 논문에서는 교육용 동영상 서비스 시스템의 콘텐츠 추천을 위한 기법 중 음성데이터 기반 자막을 이용한 분석과 영상의 키프레임을 이용한 영상 비교 기법의 효율성을 비교한다. 또한, 실험 결과를 통해 각 분석 기법이 효율적으로 활용될 수 있는 영상 콘텐츠의 유형 및 환경을 제안한다.

CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구 (A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction)

  • 이청용;이병현;이흠철;김재경
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.29-56
    • /
    • 2021
  • 전자상거래 시장이 빠르게 성장하면서 다양한 유형의 제품이 출시되고 있으며, 이로 인해 사용자들은 구매 의사결정과정에 많은 시간이 소요되는 정보 과부하 문제에 직면하고 있다. 따라서 사용자에게 맞춤형 제품 및 서비스를 제공해줄 수 있는 개인화 추천 서비스의 중요성이 대두되고 있다. 대표적으로 Netflix, Amazon, Google 등 세계적 기업은 개인화 추천 서비스를 도입하여 사용자의 구매 의사결정을 지원하고 있다. 이에 따라 사용자의 정보탐색 비용이 감소하는 효과가 나타났고, 기업의 매출 상승에도 긍정적인 영향을 끼치고 있다. 기존 개인화 추천 서비스 관련 연구에서 주로 사용된 협업필터링(Collaborative Filtering, CF) 기법은 정량화된 정보를 활용하여 사용자의 선호도를 예측하였다. 그러나 정량화된 정보만을 활용하면 사용자의 구매 의도는 고려하지 못하므로 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 이와 같은 기존 연구의 문제점을 개선하기 위해 최근에는 사용자가 작성한 리뷰를 활용한 개인화 추천 서비스 연구가 활발히 진행되고 있다. 그러나 리뷰에는 광고성 내용, 거짓 후기, 의미를 전혀 파악할 수 없거나 제품과 관련 없는 내용 등 구매의사결정을 저해하는 요소들이 포함되어 있다. 이러한 요소들이 포함된 리뷰를 활용하여 추천 서비스를 제공하게 되면, 추천 성능이 저하되는 문제가 발생할 수 있다. 따라서 본 연구에서는 이러한 문제점을 개선하기 위해 Convolutional Neural Network(CNN) 기반 리뷰 유용성 점수 예측을 통한 새로운 추천 방법론을 제안하였다. 본 연구에서 제안하는 유용한 리뷰를 포함하는 방법론과 기존 모든 선호도 평점을 고려하는 추천 방법론을 비교한 결과, 본 연구에서 제안한 방법론이 더 우수한 예측 성능을 나타내고 있음을 확인할 수 있었다. 또한 본 연구의 결과는 리뷰 유용성에 대한 정보를 개인화 추천 서비스에 반영하면 전통적인 CF의 성능을 향상할 수 있음을 시사한다.

맵리듀스를 이용한 사용자 기반 협업 필터링 추천 기법 (User-based Collaborative Filtering Recommender Technique using MapReduce)

  • 윤소영;윤성대
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.331-333
    • /
    • 2015
  • 네트워크와 모바일 기기의 확산으로 데이터가 폭발적으로 증가하고 있으며 기존의 추천 기법으로는 급증하는 데이터를 효율적으로 처리하는데 문제가 있다. 따라서 가장 널리 사용되는 추천 기법인 협업 필터링 기법의 확장성 문제를 어떻게 해결할 것에 대한 연구들이 진행되고 있다. 본 논문에서는 협업 필터링 기법에 분산 병렬처리 방식인 MapReduce를 적용하여 확장성 문제를 줄이고 정확성을 높이는 기법을 제안한다. 제안하는 기법은 사용자 기반 협업 필터링 기법에 MapReduce와 색인기법을 적용하여 유사도 계산에 사용되는 이웃의 수와 이웃의 적합성을 개선하는 방식으로 확장성과 정확성을 개선하는 효과를 기대할 수 있다.

  • PDF

클러스터링 기반 사례기반추론을 이용한 웹 개인화 추천시스템 (A Web Personalized Recommender System Using Clustering-based CBR)

  • 홍태호;이희정;서보밀
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.107-121
    • /
    • 2005
  • 최근, 추천시스템과 협업 필터링에 대한 연구가 학계와 업계에서 활발하게 이루어지고 있다. 하지만, 제품 아이템들은 다중 값 속성을 가질 수 있음에도 불구하고, 기존의 연구들은 이러한 다중 값 속성을 반영하지 못하고 있다. 이러한 한계를 극복하기 위하여, 본 연구에서는 추천시스템을 위한 새로운 방법론을 제시하고자 한다. 제안된 방법론은 제품 아이템에 대한 클러스터링 기법에 기반하여 다중 값 속성을 팔용하며, 정확한 추천을 위하여 협업 필터링을 적용한다. 즉, 사용자간의 상관관계만이 아니라 아이템간의 상관관계를 고려하기 위하여, 사용자 클러스터링에 기반한 사례기반추론과 아이템 속성 클러스터링에 기반한 사례기반추론 모두가 협업 필터링에 적용되는 것이다. 다중 값 속성에 기반하여 아이템을 클러스터링 함으로써, 아이템의 특징이 명확하게 식별될 수 있다. MovieLens 데이터를 이용하여 실험을 하였으며, 제안된 방법론이 기존 방법론의 성능을 능가한다는 결과를 얻을 수 있었다.

  • PDF