추천 시스템을 위한 분석방법들 가운데 협업 필터링은 데이터 분석에 기반한 추천 시스템에서 주요 대표적 방법이다. 일반적 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾으며, 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.
네트워크와 IT 기술의 발전으로 사용자들은 장소에 구애 받지 않고 어디서든 본인이 원하는 아이템을 검색하고 구매하고 있다. 이에 따라 추천시스템에서 급증하는 데이터로 인한 확장성 문제를 어떻게 해결할 것인가에 대한 연구들이 다양하게 진행되고 있다. 본 논문에서는 Tag 가중치를 적용한 아이템 기반 협업 필터링 기법과 분산 병렬 처리 방식인 MapReduce 방법을 적용한 추천 기법을 제안한다. 제안하는 기법은 속도 향상과 효율성을 위해 전처리 과정에서 아이템을 카테고리별로 분류하고 노드 수에 맞게 그룹지은 후 사용한다. 각 분산 노드에서 4번의 Map-Reduce 단계를 통해 데이터 처리를 진행하는데 사용자에게 더 나은 아이템을 추천하기 위해 유사도 계산에서 아이템 Tag 가중치를 사용한다. 마지막 Reduce 단계를 거쳐 출력된 예측값 중 상위 N개의 아이템을 추천에 사용한다. 실험을 통해 제안 하는 기법이 대량의 데이터를 효율적으로 처리하며 기존의 아이템 기반 기법보다 추천의 적합성도 향상되는 것을 확인하였다.
협업필터링은 사용자들이 평가한 항목들의 유사성을 기반으로 평가되지 않은 항목을 효과적으로 추천해주는 기법이다. 기존에는 사용자가 평가하지 않은 항목 중 상위 N개 항목의 추천 정확도를 높이기 위하여 사용자의 항목의 대한 상대적 선호도를 반영하는 쌍 기반 선호도(pair-wise preference)와 목록 기반 선호도(list-wise preference)가 제안되었다. 하지만 이러한 방법들은 사용자가 평가한 항목 간의 상대적인 선호도를 표현하는데 한계가 있으며, 각각의 항목들의 중요도를 반영할 수 없는 단점이 있다. 본 논문에서는 유사도 및 순위 값을 계산할 때 평점 선호도 표현 방법과 역 사용자 빈도수(inverse user frequency)를 이용하여 사용자의 잠재된 선호도를 표현하는 새로운 방법을 제안한다. 제안 방법을 메모리 기반 협업필터링에 적용하여 비교한 결과 기존 방법보다 최대 2배 이상 정확도가 향상되는 것을 확인할 수 있었다.
This study proposed the movie recommendation system based on the user's personal information and movies rated using the method of k-clique and normalized discounted cumulative gain. The main idea is to solve the problem of cold-start and to increase the accuracy in the recommendation system further instead of using the basic technique that is commonly based on the behavior information of the users or based on the best-selling product. The personal information of the users and their relationship in the social network will divide into the various community with the help of the k-clique method. Later, the ranking measure method that is widely used in the searching engine will be used to check the top ranking movie and then recommend it to the new users. We strongly believe that this idea will prove to be significant and meaningful in predicting demand for new users. Ultimately, the result of the experiment in this paper serves as a guarantee that the proposed method offers substantial finding in raw data sets by increasing accuracy to 87.28% compared to the three most successful methods used in this experiment, and that it can solve the problem of cold-start.
Euisok Chung;Hyun Woo Kim;Byunghyun Yoo;Ran Han;Jeongmin Yang;Hwa Jeon Song
ETRI Journal
/
제46권2호
/
pp.277-289
/
2024
In this paper, we describe a neural network-based application that recommends multiple items using dialog context input and simultaneously outputs a response sentence. Further, we describe a multi-item recommendation by specifying it as a set of clothing recommendations. For this, a multimodal fusion approach that can process both cloth-related text and images is required. We also examine achieving the requirements of downstream models using a pretrained language model. Moreover, we propose a gate-based multimodal fusion and multiprompt learning based on a pretrained language model. Specifically, we propose an automatic evaluation technique to solve the one-to-many mapping problem of multi-item recommendations. A fashion-domain multimodal dataset based on Koreans is constructed and tested. Various experimental environment settings are verified using an automatic evaluation method. The results show that our proposed method can be used to obtain confidence scores for multi-item recommendation results, which is different from traditional accuracy evaluation.
최근의 전자상거래 사이트들은 사용자 만족을 극대화 시키기 위해 사용자별로 개인화된 서비스를 제공하고 있다. 협력적 필터링은 개인화된 아이템 실시간 추천을 위하여 고안된 알고리즘이며 예측의 정확도와 성능을 증대시키기 위해서 다양한 보완 방법들이 제시되고 있다. 유용한 추천 시스템을 구축하기 위해서는 두 가지 문제를 동시에 고려해야 한다. 그러나, 협력적 필터링 기술에 관한 연구는 정확도 향상에 관한 연구가 주로 수행되었고 성능 문제는 간과하여 왔다. 본 연구에서는 추천 에이전트 시스템의 성능을 향상시킬 수 있는 대표 속성을 이용한 이웃 선택, 추천 텍스타일 집합, 유사 군집 요소를 협력적 필터링 기술에 추가하여 실험해 보았다. 패션 디자인 추천 에이전트 시스템(FDRAS)을 개발하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.
웹상에서의 기하급수적으로 증가하는 정보의 양으로 인해, 중요하고 가치 있는 데이터를 변별 해 내는 작업은 그 어느 때보다도 중요하다고 하겠다. 추천 시스템은 이러한 정보의 과 공급 문제를 해결하기 위한 가장 효과적인 방법 중 하나임에도 불구하고, 그 성능은 기존 방식들에서 크게 진전을 이루지 못하고 있는 것이 사실이다. 따라서 본 논문에서는 이 문제를 진전시키기 위해, 협업태그를 활용한 새로운 사용자 프로파일링 기법을 제안하고 사용자의 평가 및 태깅패턴을 분석, 그 활용 또한 모색한다. 본 논문에서 제안하는 기법의 검증을 위해, 해당 프로파일링 기법을 활용 한 혼합 영화 추천 시스템을 구현하고 실제 데이터를 사용하여 기존의 추천 방식 대비 그 경쟁력을 검증하였다. 그와 더불어, 민감도 분석을 통해 사용자의 태깅패턴과 평가패턴에 기반한 차별적인 추천 방식의 잠재적 가능성 또한 제안, 검증한다.
온라인에서 보험 정보를 찾는 이용자들이 많은 반면, 보험사 웹 사이트 콘텐츠 추천 연구 사례는 많지 않았으므로 본 연구에서는 보험사 웹 사이트의 페이지 방문 이력을 활용하여 사용자에게 선호 가능성이 높은 페이지 추천 시스템을 제안하였다. 데이터는 웹 브라우저 이용 시 발생하는 클라이언트 사이트 스토리지(Client-side storage)를 활용하여 수집하였으며, 추천 기술로는 협업 필터링(Collaborative filtering)을 연구에 적용하였다. 실험을 실시한 결과 방문여부를 의미하는 이진화된 데이터를 사용한 자카드 인덱스(Jaccard index) 기반의 아이템 기반 협업 필터링(Item-based collaborative, IBCF)에서 좋은 성능을 나타내었다. 향후에는 아이템에 가중치를 부여한 추천 기술을 연구하여, 기업에서 사용 시 마케팅 전략에 부합하는 콘텐츠 추천 시스템을 구현할 수 있을 것이다.
인터넷과 모바일 기기의 사용이 보편화되면서 사용자들이 다양한 웹 사이트에서 자신이 원하는 정보를 찾기 위해 검색과 추천을 이용하는 것이 일상화되고 있다. 본 논문에서는 사용자에게 보다 적합한 아이템을 추천하기위해 사용자의 활동과 시간 정보를 적용하여 시간의 흐름에 따른 사용자의 선호도 변화를 반영한 추천 기법을 제안한다. 제안하는 기법은 아이템 선택 시 고려되는 태그 정보를 포함한 데이터를 카테고리별로 분류한 후 시간 변화에 따른 사용자 선호도 변화 정보를 반영한 데이터만을 사용한다. 해당 카테고리를 선호하는 사용자에게는 협업 필터링 기법에 태그 정보를 적용하여 추출한 아이템을 추천하고, 일반 사용자에게는 태그 정보를 사용하여 계산한 순위를 기반으로 아이템을 추천한다. 제안하는 기법은 hetrec2011-movielens-2k 데이터셋을 사용하여 실험하였으며 실험을 통해 제안한 기법이 기존의 아이템 기반, 사용자 기반 기법보다 추천의 정확성과 적합성이 향상되는 것을 확인하였다.
전자 학술 정보 유통의 확대에 따라 날로 증가되는 학술 콘텐츠 서비스 수요에 부응하기 위하여 보다 효과적인 학술 콘텐츠 추천 시스템 개발이 요구된다. 학술 콘텐츠 추천 시스템은 정보 소비자의 과거 이용 내역을 기반으로 각 소비자 선호(preference)에 맞는 학술 콘텐츠를 제공함으로써 콘텐츠 이용성을 보다 효과적으로 향상 시킬 수 있다. 본 논문에서는 특정 기관에 소속된 사용자의 선호에 더욱 부합하는 학술 콘텐츠를 제공하기 위하여 기관의 전자 저널 구독 정보 및 웹 이용 로그를 활용한 저널 추천 기법을 제안한다. 제안하는 추천 기법에서는 기관 사용자의 저널 선호도를 효과적으로 예측하기 위하여 기관 유사도(Institution similarity), 그리고 참고문헌의 인용 관계 데이터를 기반으로 저널 유사도(Journal similarity) 및 저널 중요도(Journal importance)를 산출하여 최종적으로 기관 맞춤형 저널 추천 항목을 구성하게 된다. 또한, 제안하는 추천기법이 적용된 기관 맞춤형 저널 추천 시스템 프로토타입을 개발한다. 개발된 저널 추천 시스템은 각 기관의 저널 선호도 예측을 위하여 활용되는 웹 이용로그를 효과적으로 수집하고 이를 추천 기법에 활용하기 용이한 데이터로 가공 처리 하여 별도의 데이터베이스에 저장하여 추천 기법의 저널 선호도 예측을 위한 기반 데이터로 활용한다. 마지막으로 우리는 기존 추천 기법들과의 비교 성능 평가를 통해 제안 기법의 차별성과 우수성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.