• Title/Summary/Keyword: Recommendation Systems

Search Result 839, Processing Time 0.026 seconds

K-Means Clustering with Content Based Doctor Recommendation for Cancer

  • kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.167-176
    • /
    • 2020
  • Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.

A Situation-Based Recommendation System for Exploiting User's Mood (사용자의 기분을 고려하기 위한 상황 기반 추천 시스템)

  • Kim, Younghyun;Lim, Woo Sub;Jeong, Jae-Han;Lee, Kyoung-Jun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.129-137
    • /
    • 2019
  • Recommendation systems help users by suggesting items such as products, services, and information. However, most research on recommendation systems has not considered people's moods although the appropriate contents recommended to people would be changed by people's moods. In this paper, we propose a situation-based recommendation system which exploits people's mood. The proposed scheme is based on the fact that the mood of a user is changed frequently by the surrounding environments such as time, weather, and anniversaries. The environments are defined as feature identifications, and the rating values on items are stored as feature identifications at a database. Then, people can be recommended diverse items according to their environments. Our proposed scheme has some advantages such as no problem of cold start, low processing overhead, and serendipitous recommendation. The proposed scheme can be also a good option as of assistance to other recommendation systems.

Design and Implementation of Dynamic Recommendation Service in Big Data Environment

  • Kim, Ryong;Park, Kyung-Hye
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2019
  • Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.

A Recommendation System using Dynamic Profiles and Relative Quantification

  • Lee, Se-Il;Lee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • Recommendation systems provide users with proper services using context information being input from many sensors occasionally under ubiquitous computing environment. But in case there isn't sufficient context information for service recommendation in spite of much context information, there can be problems of resulting in inexact result. In addition, in the quantification step to use context information, there are problems of classifying context information inexactly because of using an absolute classification course. In this paper, we solved the problem of lack of necessary context information for service recommendation by using dynamic profile information. We also improved the problem of absolute classification by using a relative classification of context information in quantification step. As the result of experiments, expectation preference degree was improved by 7.5% as compared with collaborative filtering methods using an absolute quantification method where context information of P2P mobile agent is used.

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.

Leveraging Big Data for Spark Deep Learning to Predict Rating

  • Mishra, Monika;Kang, Mingoo;Woo, Jongwook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2020
  • The paper is to build recommendation systems leveraging Deep Learning and Big Data platform, Spark to predict item ratings of the Amazon e-commerce site. Recommendation system in e-commerce has become extremely popular in recent years and it is very important for both customers and sellers in daily life. It means providing the users with products and services they are interested in. Therecommendation systems need users' previous shopping activities and digital footprints to make best recommendation purpose for next item shopping. We developed the recommendation models in Amazon AWS Cloud services to predict the users' ratings for the items with the massive data set of Amazon customer reviews. We also present Big Data architecture to afford the large scale data set for storing and computation. And, we adopted deep learning for machine learning community as it is known that it has higher accuracy for the massive data set. In the end, a comparative conclusion in terms of the accuracy as well as the performance is illustrated with the Deep Learning architecture with Spark ML and the traditional Big Data architecture, Spark ML alone.

Hybrid Recommendation Based Brokerage Agent Service System under the Compound Logistics (공동물류 환경의 혼합추천시스템 기반 차주-화주 중개서비스 구현)

  • Jang, Sangyoung;Choi, Myoungjin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • Compound logistics is a service aimed to enhance logistics efficiency by supporting that shippers and consigners jointly use logistics facilities. Many of these services have taken place both domestically and internationally, but the joint logistics services for e-commerce have not been spread yet, since the number of the parcels that the consigners transact business is usually small. As one of meaningful ways to improve utilization of compound logistics, we propose a brokerage service for shipper and consigners based on the hybrid recommendation system using very well-known classification and clustering methods. The existing recommendation system has drawn a relatively low satisfaction as it brought about one-to-one matches between consignors and logistics vendors in that such matching constrains choice range of the users to one-to-one matching each other. However, the implemented hybrid recommendation system based brokerage agent service system can provide multiple choice options to mutual users with descending ranks, which is a result of the recommendation considering transaction preferences of the users. In addition, we applied feature selection methods in order to avoid inducing a meaningless large size recommendation model and reduce a simple model. Finally, we implemented the hybrid recommendation system based brokerage agent service system that shippers and consigners can join, which is the system having capability previously described functions such as feature selection and recommendation. As a result, it turns out that the proposed hybrid recommendation based brokerage service system showed the enhanced efficiency with respect to logistics management, compared to the existing one by reporting two round simulation results.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF

Performance Improvement of a Recommendation System using Stepwise Collaborative Filtering (단계적 협업필터링을 이용한 추천시스템의 성능 향상)

  • Lee, Jae-Sik;Park, Seok-Du
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.218-225
    • /
    • 2007
  • Recommendation system is one way of implementing personalized service. The collaborative filtering is one of the major techniques that have been employed for recommendation systems. It has proven its effectiveness in the recommendation systems for such domain as motion picture or music. However, it has some limitations, i.e., sparsity and scalability. In this research, as one way of overcoming such limitations, we proposed the stepwise collaborative filtering method. To show the practicality of our proposed method, we designed and implemented a movie recommendation system which we shall call Step_CF, and its performance was evaluated using MovieLens data. The performance of Step_CF was better than that of Basic_CF that was implemented using the original collaborative filtering method.

  • PDF

Sparsity Effect on Collaborative Filtering-based Personalized Recommendation (협업 필터링 기반 개인화 추천에서의 평가자료의 희소 정도의 영향)

  • Kim, Jong-Woo;Bae, Se-Jin;Lee, Hong-Joo
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.131-149
    • /
    • 2004
  • Collaborative filtering is one of popular techniques for personalized recommendation in e-commerce sites. An advantage of collaborative filtering is that the technique can work with sparse evaluation data to predict preference scores of new alternative contents or advertisements. There is, however, no in-depth study about the sparsity effect of customer's evaluation data to the performance of recommendation. In this study, we investigate the sparsity effect and hybrid usages of customers' evaluation data and purchase data using an experiment result. The result of the analysis shows that the performance of recommendation decreases monotonically as the sparsity increases, and also the hybrid usage of two different types of data; customers' evaluation data and purchase data helps to increase the performance of recommendation in sparsity situation.