• Title/Summary/Keyword: Recommendation Performance Prediction

Search Result 80, Processing Time 0.022 seconds

Improvement of Collaborative Filtering Algorithm Using Imputation Methods

  • Jeong, Hyeong-Chul;Kwak, Min-Jung;Noh, Hyun-Ju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.441-450
    • /
    • 2003
  • Collaborative filtering is one of the most widely used methodologies for recommendation system. Collaborative filtering is based on a data matrix of each customer's preferences and frequently, there exits missing data problem. We introduced two imputation approach (multiple imputation via Markov Chain Monte Carlo method and multiple imputation via bootstrap method) to improve the prediction performance of collaborative filtering and evaluated the performance using EachMovie data.

  • PDF

Implementation of a Personalized Restaurant Recommendation System for The Mobility Handicapped (교통약자를 위한 맞춤형 식당 추천시스템 구현)

  • Lee, Jin-Ju;Park, So-Yeon;Kim, Seo-Yun;Lee, Jeong-Eun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.187-196
    • /
    • 2021
  • The mobility handicapped are representative socially vulnerable people who account for a high percentage of our society. Due to the recent development of technology, personalized welfare technologies for the socially vulnerable are being studied, but it is relatively insufficient compared to the general people. In this study, we intend to implement a personalized restaurant recommendation system for the mobility handicapped. To this end, a hybrid recommendation system was implemented by combining the data of special transportation boarding and alighting history (7,153 cases) and information of Daegu Food restaurants (955 cases). In order to evaluate the effectiveness of the implemented recommendation system, we conducted performance comparisons with existing recommendation systems by prediction error rate and recommendation coverage. As a result of the analysis, the performance was higher than that of the existing recommendation system, and the possibility of a personalized restaurant recommendation system for the mobility handicapped was confirmed. In addition, we also confirmed the correlation in which similar restaurants are recommended in some types of the mobility handicapped. As a result of this study, it is judged that it will contribute to the use of restaurants with high satisfaction for the mobility handicapped, and the limitations of the study are also presented.

Design a Method Enhancing Recommendation Accuracy Using Trust Cluster from Large and Complex Information (대규모 복잡 정보에서 신뢰 클러스터를 이용한 추천 정확도 향상기법 설계)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Recently, with the development of ICT technology and the rapid spread of smart devices, a huge amount of information is being generated. The recommendation system has helped the informant to judge the information from the information overload, and it has become a solution for the information provider to increase the profit of the company and the publicity effect of the company. Recommendation systems can be implemented in various approaches, but social information is presented as a way to improve performance. However, no research has been done to utilize trust cluster information among users in the recommendation system. In this paper, we propose a method to improve the performance of the recommendation system by using the influence between the intra-cluster objects and the information between the trustor-trustee in the cluster generated in the online review. Experiments using the proposed method and real data have confirmed that the prediction accuracy is improved than the existing methods.

A Study on the Recommendation Algorithm based on Trust/Distrust Relationship Network Analysis (사용자 간 신뢰·불신 관계 네트워크 분석 기반 추천 알고리즘에 관한 연구)

  • Noh, Heeryong;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.169-185
    • /
    • 2017
  • This study proposes a novel recommendation algorithm that reflects the results from trust/distrust network analysis as a solution to enhance prediction accuracy of recommender systems. The recommendation algorithm of our study is based on memory-based collaborative filtering (CF), which is the most popular recommendation algorithm. But, unlike conventional CF, our proposed algorithm considers not only the correlation of the rating patterns between users, but also the results from trust/distrust relationship network analysis (e.g. who are the most trusted/distrusted users?, whom are the target user trust or distrust?) when calculating the similarity between users. To validate the performance of the proposed algorithm, we applied it to a real-world dataset that contained the trust/distrust relationships among users as well as their numeric ratings on movies. As a result, we found that the proposed algorithm outperformed the conventional CF with statistical significance. Also, we found that distrust relationship was more important than trust relationship in measuring similarities between users. This implies that we need to be more careful about negative relationship rather than positive one when tracking and managing social relationships among users.

MFMAP: Learning to Maximize MAP with Matrix Factorization for Implicit Feedback in Recommender System

  • Zhao, Jianli;Fu, Zhengbin;Sun, Qiuxia;Fang, Sheng;Wu, Wenmin;Zhang, Yang;Wang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2381-2399
    • /
    • 2019
  • Traditional recommendation algorithms on Collaborative Filtering (CF) mainly focus on the rating prediction with explicit ratings, and cannot be applied to the top-N recommendation with implicit feedbacks. To tackle this problem, we propose a new collaborative filtering approach namely Maximize MAP with Matrix Factorization (MFMAP). In addition, in order to solve the problem of non-smoothing loss function in learning to rank (LTR) algorithm based on pairwise, we also propose a smooth MAP measure which can be easily implemented by standard optimization approaches. We perform experiments on three different datasets, and the experimental results show that the performance of MFMAP is significantly better than other recommendation approaches.

Time-aware Item-based Collaborative Filtering with Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.93-100
    • /
    • 2022
  • In the era of information overload on the Internet, the recommendation system, which is an indispensable function, is a service that recommends products that a user may prefer, and has been successfully provided in various commercial sites. Recently, studies to reflect the rating time of items to improve the performance of collaborative filtering, a representative recommendation technique, are active. The core idea of these studies is to generate the recommendation list by giving an exponentially lower weight to the items rated in the past. However, this has a disadvantage in that a time function is uniformly applied to all items without considering changes in users' preferences according to the characteristics of the items. In this study, we propose a time-aware collaborative filtering technique from a completely different point of view by developing a new similarity measure that integrates the change in similarity values between items over time into a weighted sum. As a result of the experiment, the prediction performance and recommendation performance of the proposed method were significantly superior to the existing representative time aware methods and traditional methods.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

GAIN-QoS: A Novel QoS Prediction Model for Edge Computing

  • Jiwon Choi;Jaewook Lee;Duksan Ryu;Suntae Kim;Jongmoon Baik
    • Journal of Web Engineering
    • /
    • v.21 no.1
    • /
    • pp.27-52
    • /
    • 2021
  • With recent increases in the number of network-connected devices, the number of edge computing services that provide similar functions has increased. Therefore, it is important to recommend an optimal edge computing service, based on quality-of-service (QoS). However, in the real world, there is a cold-start problem in QoS data: highly sparse invocation. Therefore, it is difficult to recommend a suitable service to the user. Deep learning techniques were applied to address this problem, or context information was used to extract deep features between users and services. However, edge computing environment has not been considered in previous studies. Our goal is to predict the QoS values in real edge computing environments with improved accuracy. To this end, we propose a GAIN-QoS technique. It clusters services based on their location information, calculates the distance between services and users in each cluster, and brings the QoS values of users within a certain distance. We apply a Generative Adversarial Imputation Nets (GAIN) model and perform QoS prediction based on this reconstructed user service invocation matrix. When the density is low, GAIN-QoS shows superior performance to other techniques. In addition, the distance between the service and user slightly affects performance. Thus, compared to other methods, the proposed method can significantly improve the accuracy of QoS prediction for edge computing, which suffers from cold-start problem.

A Strategy for Neighborhood Selection in Collaborative Filtering-based Recommender Systems (협력 필터링 기반의 추천 시스템을 위한 이웃 선정 전략)

  • Lee, Soojung
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1380-1385
    • /
    • 2015
  • Collaborative filtering is one of the most successfully used methods for recommender systems and has been utilized in various areas such as books and music. The key point of this method is selecting the most proper recommenders, for which various similarity measures have been studied. To improve recommendation performance, this study analyzes problems of existing recommender selection methods based on similarity and presents a method of dynamically determining recommenders based on the rate of co-rated items as well as similarity. Examination of performance with varying thresholds through experiments revealed that the proposed method yielded greatly improved results in both prediction and recommendation qualities, and that in particular, this method showed performance improvements with only a few recommenders satisfying the given thresholds.

Movie Recommendation System based on Latent Factor Model (잠재요인 모델 기반 영화 추천 시스템)

  • Ma, Chen;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.125-134
    • /
    • 2021
  • With the rapid development of the film industry, the number of films is significantly increasing and movie recommendation system can help user to predict the preferences of users based on their past behavior or feedback. This paper proposes a movie recommendation system based on the latent factor model with the adjustment of mean and bias in rating. Singular value decomposition is used to decompose the rating matrix and stochastic gradient descent is used to optimize the parameters for least-square loss function. And root mean square error is used to evaluate the performance of the proposed system. We implement the proposed system with Surprise package. The simulation results shows that root mean square error is 0.671 and the proposed system has good performance compared to other papers.