• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.023 seconds

A Study on Improving Efficiency of Recommendation System Using RFM (RFM을 활용한 추천시스템 효율화 연구)

  • Jeong, Sora;Jin, Seohoon
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method (추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상)

  • Han, Jungkyu;Chun, Sejin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.

Affection-enhanced Personalized Question Recommendation in Online Learning

  • Mingzi Chen;Xin Wei;Xuguang Zhang;Lei Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3266-3285
    • /
    • 2023
  • With the popularity of online learning, intelligent tutoring systems are starting to become mainstream for assisting online question practice. Surrounded by abundant learning resources, some students struggle to select the proper questions. Personalized question recommendation is crucial for supporting students in choosing the proper questions to improve their learning performance. However, traditional question recommendation methods (i.e., collaborative filtering (CF) and cognitive diagnosis model (CDM)) cannot meet students' needs well. The CDM-based question recommendation ignores students' requirements and similarities, resulting in inaccuracies in the recommendation. Even CF examines student similarities, it disregards their knowledge proficiency and struggles when generating questions of appropriate difficulty. To solve these issues, we first design an enhanced cognitive diagnosis process that integrates students' affection into traditional CDM by employing the non-compensatory bidimensional item response model (NCB-IRM) to enhance the representation of individual personality. Subsequently, we propose an affection-enhanced personalized question recommendation (AE-PQR) method for online learning. It introduces NCB-IRM to CF, considering both individual and common characteristics of students' responses to maintain rationality and accuracy for personalized question recommendation. Experimental results show that our proposed method improves the accuracy of diagnosed student cognition and the appropriateness of recommended questions.

APMDI-CF: An Effective and Efficient Recommendation Algorithm for Online Users

  • Ya-Jun Leng;Zhi Wang;Dan Peng;Huan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3050-3063
    • /
    • 2023
  • Recommendation systems provide personalized products or services to online users by mining their past preferences. Collaborative filtering is a popular recommendation technique because it is easy to implement. However, with the rapid growth of the number of users in recommendation systems, collaborative filtering suffers from serious scalability and sparsity problems. To address these problems, a novel collaborative filtering recommendation algorithm is proposed. The proposed algorithm partitions the users using affinity propagation clustering, and searches for k nearest neighbors in the partition where active user belongs, which can reduce the range of searching and improve real-time performance. When predicting the ratings of active user's unrated items, mean deviation method is used to impute values for neighbors' missing ratings, thus the sparsity can be decreased and the recommendation quality can be ensured. Experiments based on two different datasets show that the proposed algorithm is excellent both in terms of real-time performance and recommendation quality.

Movie Recommendation System using Social Network Analysis and Normalized Discounted Cumulative Gain (소셜 네트워크 분석 및 정규화된 할인 누적 이익을 이용한 영화 추천 시스템)

  • Vilakone, Phonexay;Xinchang, Khamphaphone;Lee, Hanna;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.267-269
    • /
    • 2019
  • There are many recommendation systems offer an effort to get better preciseness the information to the users. In order to further improve more accuracy, the social network analysis method which is used to analyze data to community detection in social networks was introduced in the recommendation system and the result shows this method is improving more accuracy. In this paper, we propose a movie recommendation system using social network analysis and normalized discounted cumulative gain with the best accuracy. To estimate the performance, the collaborative filtering using the k nearest neighbor method, the social network analysis with collaborative filtering method and the proposed method are used to evaluate the MovieLens data. The performance outputs show that the proposed method get better the accuracy of the movie recommendation system than any other methods used in this experiment.

Recommendation Method for Mobile Contents Service based on Context Data in Ubiquitous Environment (유비쿼터스 환경에서 상황 데이터 기반 모바일 콘텐츠 서비스를 위한 추천 기법)

  • Kwon, Joon Hee;Kim, Sung Rim
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • The increasing popularity of mobile devices, such as cellular phones, smart phones, and PDAs, has fostered the need to recommend more effective information in ubiquitous environments. We propose the recommendation method for mobile contents service using contexts and prefetching in ubiquitous environment. The proposed method enables to find some relevant information to specific user's contexts and computing system contexts. The prefetching has been applied to recommend to user more effectively. Our proposed method makes more effective information recommendation. The proposed method is conceptually comprised of three main tasks. The first task is to build a prefetching zone based on user's current contexts. The second task is to extract candidate information for each user's contexts. The final task is prefetch the information considering mobile device's resource. We describe a new recommendation.

Intelligent recommendation method of intelligent tourism scenic spot route based on collaborative filtering

  • Liu Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1260-1272
    • /
    • 2024
  • This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.

Contents Recommendation Method Based on Social Network (소셜네트워크 기반의 콘텐츠 추천 방법)

  • Pei, Yun-Feng;Sohn, Jong-Soo;Chung, In-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.279-290
    • /
    • 2011
  • As the volume of internet and web contents have shown an explosive growth in recent years, lately contents recommendation system (CRS) has emerged as an important issue. Consequently, researches on contents recommendation method (CRM) for CRS have been conducted consistently. However, traditional CRMs have the limitations in that they are incapable of utilizing in web 2.0 environments where positions of content creators are important. In this paper, we suggest a novel way to recommend web contents of high quality using both degree of centrality and TF-IDF. For this purpose, we analyze TF-IDF and degree of centrality after collecting RSS and FOAF. Then we recommend contents using these two analyzed values. For the verification of the suggested method, we have developed the CRS and showed the results of contents recommendation. With the suggested idea we can analyze relations between users and contents on the entered query, and can consequently provide the appropriate contents to the user. Moreover, the implemented system we suggested in this paper can provide more reliable contents than traditional CRS because the importance of the role of content creators is reflected in the new system.

A Study on Recommendation Method Based on Web 3.0

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.43-51
    • /
    • 2012
  • Web 3.0 is the next-generation of the World Wide Web and is included two main platforms, semantic technologies and social computing environment. The basic idea of web 3.0 is to define structure data and link them in order to more effective discovery, automation, integration, and reuse across various applications. The semantic technologies represent open standards that can be applied on the top of the web. The social computing environment allows human-machine co-operations and organizing a large number of the social web communities. In the recent years, recommender systems have been combined with ontologies to further improve the recommendation by adding semantics to the context on the web 3.0. In this paper, we study previous researches about recommendation method and propose a recommendation method based on web 3.0. Our method scores documents based on context tags and social network services. Our social scoring model is computed by both a tagging score of a document and a tagging score of a document that was tagged by a user's friends.

Dessert Ateliers Recommendation Methods for Dessert E-commerce Services

  • Son, Yeonbin;Chang, Tai-Woo;Choi, Yerim
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.111-117
    • /
    • 2020
  • Dessert Ateliers (DA) are small shops that sell high-end homemade desserts such as macaroons, cakes, and cookies, and their popularity is increasing according to the emergence of small luxury trends. Even though each DA sells the same kinds of desserts, they are differentiated by the personality of their pastry chef; thus, there is a need to purchase desserts online that customers cannot see and purchase offline, and thus dessert e-commerce has emerged. However, it is impossible for customers to identify all the information of each DA and clearly understand customers' preferences when buying desserts through the dessert e-commerce. When a dessert e-commerce service provides a DA recommendation service, customers can reduce the time they hesitate before making a decision. Therefore, this paper proposes two kinds of DA recommendation method: a clustering-based recommendation method that calculates the similarity between customers' content and DAs and a dynamic weighting-based recommendation method that trains the importance of decision factors considering customer preferences. Various experiments were conducted using a real-world dataset to evaluate the performance of the proposed methods and it showed satisfactory results.