• 제목/요약/키워드: Recombinant yeast

검색결과 277건 처리시간 0.026초

Saccharomyces cerevisiae에서 Paenibacilius macerans 유래 cycloinulooligosaccha-ride fructanotransferase의 발현 (Expression of Paenibacillus macerans Cycloinulooligosaccharide Fructanotransferase in Saccharomyces cerevisiae)

  • 김현철;김정현;전숭종;최우봉;남수완
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.317-322
    • /
    • 2005
  • Paenibacillus macerans 유래의 cycloinulooligosaccharide fructanotransferase (CFTase) 유전자(cft)를 Saccharomyces cerevisiae SEY2102에 발현시키기 위해 대장균과 효모의 shuttle vector인 pYES2.0에 subcloning 하였다. 구축된 pYGECFTN (8.6 kb) plasmid를 S. cerevisiae SEY2102에 형질전환하였고, uracil이 결핍된 SD 배지에서 선별하였다. cft 유전자는 선별된 형질전환체(S. cerevisiae SEY2102/pYCECFTN)에서 GAL1 promoter 조절하에 성공적으로 발현되어 cyclofructan(CF)을 생성함을 TLC로 확인하였다. 그러나, 균체 외로의 효소 분비는 이루어지지 않았고 cytoplasm보다 periplasmic space에 많이 존재하였다 S. cerevisiae에서 발현된 P. polymyxa유래 CFTase보다 P. macerans 유래 CFTase의 CF 생성이 image analyzer로 확인한 결과, 더 많음을 알 수 있었다. 효소반응 5분째부터 CF가 생성됨을 확인하였고, 최적온도와 최적 pH는 각각 $45^{\circ}C$와 pH 8.0로 나타났으며, $55^{\circ}C$까지 효소활성이 안정적으로 유지되었다. Dahlia tubers, chicory root, Jerusalem artichoke 등의 inulin 기질에 따른 반응산물 분석 결과, 모든 기질로부터 CF가 생산되었으며, dahlia tubers와 Jerusalem artichoke로부터 가장 효과적으로 생성되었다.

Functional Analysis of a Gene Encoding Endoglucanase that Belongs to Glycosyl Hydrolase Family 12 from the Brown-Rot Basidiomycete Fomitopsis palustris

  • Song, Byeong-Cheol;Kim, Ki-Yeon;Yoon, Jeong-Jun;Sim, Se-Hoon;Lee, Kang-Seok;Kim, Yeong-Suk;Kim, Young-Kyoon;Cha, Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.404-409
    • /
    • 2008
  • The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and ${\beta}$-glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.

대장균에서의 Candida antarctica lipase B 최적 발현 (Functional expression of CalB in E.coli)

  • 김현숙;김용환
    • KSBB Journal
    • /
    • 제23권5호
    • /
    • pp.445-448
    • /
    • 2008
  • 생명공학분야에서 매우 중요한 효소 중에 하나인 lipase는 여러 산업에 유용하게 사용되고 있다. lipase를 선별하기 위해서는 최적화된 발현 시스템이 필요하다. 많은 발현 시스템중에 E.coli 발현 시스템은 바람직한 특성을 갖는 효소를 스크리닝하거나, 선별된 변이체들의 특성을 확인하는 데에 소요되는 시간과 비용을 단축시켜 줄 것이다. 본 연구에서는 그 중에 BL21와 OrigamiB에서 CalB를 발현하였다. 그 결과 BL21 균주에서 발현된 CalB는 대부분이 불용성의 inclusion body를 형성하고, 전혀 활성을 나타내지 않았다. 이전의 타 연구와 더불어 이 결과에서 E.coli 균주에서 CalB의 기능적 발현이 상당히 어렵다는 것을 알 수 있다. 특히 불용성의 inclusion body형성과 lipase의 세포에 대한 유독성이 원인이 될 수 있다. 그러나 BL21와 비교해보면, OrigamiB에서 발현된 CalB 또한 많은 양의 inclusion body를 형성하지만, lipase의 주요 특성중의 하나인 가수분해 활성이 상당하게 나타나는 것을 알 수 있다. lipase의 구조 형성을 도와주는 변형된 OrigamiB와 저온유도시스템인 pCold 플라스미드를 사용했기 때문이다. 이처럼 균주나 플라스미드의 선택, 유도조건의 변경 등의 여러 연구를 통하여 유용한 효소를 선별할 수 있다.

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF

Structure and Function of NtCDPK1, a Calcium-dependent Protein Kinase in Tobccco

  • Yoon, Gyeong-Mee;Lee, Sang-Sook;Pai, Hyun-Sook
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.79-82
    • /
    • 2000
  • We have isolated a cDNA encoding a calcium-dependent protein kinase (CDPK) in Nicotiana tabacum, which was designated NtCDPK1. Accumulation of the NtCDPK1 mRNA was stimulated by various stimuli, including phytohormones, CaCl$_2$ wounding, fungal elicitors, chitin and methyl jasmonate. The NtCDPK1 gene encodes a functional Ser/Thr protein kinase of which phosphorylation activity is strongly induced by calcium. By analyzing expression of the NtCDPK1-GFP fusion protein and by immunoblotting with antibody which reacts with NtCDPK1, we found that NtCDPK1 is localized in membrane and nucleus in plant cells. Silencing expression of the NtCDPK1 transgene resulted in marked decrease of lateral root development in the transgenic tobacco plants. Yeast two hybrid screening using NtCDPK1 as a bait identified a tobacco homologue of proteasome regulatory subunit 21D7, designated Nt21D7. The 21D7 mRNA has been shown to be predominantly expressed in proliferating tissues in the cell cycledependent manner in carrot. The recombinant NtCDPK1 protein associated with Nt21D7 in vitro, and could phosphorylate the Nt21D7 protein in vitro in the presence of calcium, suggesting that Nt21D7 protein is a natural substrate of NtCDPK1 in tobacco. These results suggest that NtCDPK1 may regulate tell proliferation processes, such as lateral root formation, by regulating specificity and/or activity of proteasome-mediated protein degradation pathway.

  • PDF

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

Apergillus niger LK 유래의 Epoxide Hydrolase 클로닝 및 특성 분석 (Cloning and Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK)

  • 이은열;김희숙
    • KSBB Journal
    • /
    • 제16권6호
    • /
    • pp.562-567
    • /
    • 2001
  • Styrene oxide 계열의 라세믹 에폭사이드 기질에 대한 입체선택적 가수분해능이 우수한 Aspergillus nigerr계열의 생촉매를 선발하였고, A.niger LK 유래의 EHase의 기질 특이성을 분석하였다. A. niger LK의 EHase는 benzene ring에 oxirane ring이 직접 연결되어 있는 styrene oxide, p-nitrostyrene oxide 기질에 대해서는 (R)-이성질체, benzene ring과 oxirane ring사이에 ether 등의 연결 chain이 있는 기질에 대해서는 (S)-이 성질체에 대한 입체선택적 가수분해능이 우수하였다. A niger LK의 EHase 유전자를 RT-PCR 방법으로 클로닝하였고, sequencing을 통해 다른 미생물 유래의 EHase와의 sequence identity 분석 등을 통해 특성을 분석하였다. Yeast 유래의 EHase와는 32% 수준의 sequence identity를 보였으며, Agrobacterisum, Corynebacterium 등의 박테리아 유래 EHase와는 identity가 매우 낮은 특성을 보였다. E. coli 숙주에서 발현된 재조합 EHase의 활성은 라세믹 에폭사이드 기질에 대한 입체선택적 가수분해 반응을 통해 확인할 수 있었다. 클러닝된 EHase의 보다 효율적인 발현 연구가 필요하며, 이러한 재조합 EHase는 고부가가치 광학활성 에폭사이드 제조를 위한 생물전환공정 시스템의 생촉매로 응용될 수 있을 것으로 기대된다.

  • PDF

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

Genome-wide Analysis and Control of Microbial Hosts for a High-level Production of Therapeutic Proteins

  • Kim, Sung-Geun;Park, Jung-Hwan;Lee, Tae-Hee;Kim, Myung-Dong;Seo, Jin-Ho;Lim, Hyung-Kwon
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.230-232
    • /
    • 2005
  • The formation of insoluble aggregation of the recombinant kringle fragment of human apolipoprotein(a), rhLK8, in endoplasmic reticulum was identified as the rate-limiting step in the rhLK8 secretion in Saccharomyces cerevisiae. To analyze the protein secretion pathway, some of yeast genes closely related to protein secretion was rationally selected and their oligomer DNA were arrayed on the chip. The expression profiling of these genes during the induction of rhLK8 in fermentor fed-batch cultures revealed that several foldases including pdi1 gene were up-regulated in the early induction phase, whereas protein transport-related genes were up-regulated in the late induction phase. The coexpression of pdi1 gene increased rhLK8-folding capacity. Hence, the secretion efficiency of rhLK8 in the strain overexpressing pdi1 gene increased by 2-fold comparing in its parental strain. The oligomer DNA chip arrayed with minimum number of the genes selected in this study could be generally applicable to the monitoring system for the heterologous protein secretion and expression in Saccharomyces cerevisiae. With the optimization of fed-batch culture conditions and the alteration of genetic background of host, we obtained extracellular rhLK8 at higher yields than with Pichia pastoris systems, which was a 25-fold increased secretion level of rhLK8 compared to the secretion level at the initiation of this study.

  • PDF