• Title/Summary/Keyword: Recombinant peptide

Search Result 264, Processing Time 0.022 seconds

Expression of Fungal Phytase on the Cell Surface of Saccharomyces cerevisiae

  • Mo, Ae-Young;Park, Seung-Moon;Kim, Yun-Sik;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.576-581
    • /
    • 2005
  • Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast. Saccharomyces cerevisiae, by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) of Aspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast ${\alpha}-agglutinin$, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced into S. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.

In situ Recovery of hCTLA4Ig from Suspension Cell Cultures of Oryza sativa (형질전환 벼 현탁세포 배양에서 hCTLA4Ig의 in situ 회수)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Yun, Boreum;Hong, Seok-Mi;Kim, Sun-Dal;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.284-290
    • /
    • 2016
  • In this research, recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced by transgenic rice cells. RAmy3D promoter was used for overcome the limitation of low expression level in transgenic plant cells, and the secretion of target protein was accomplished by signal peptide. However, the RAmy3D promoter system which can be induced only by sugar starvation causes the decrease of cell viability. As a result, cell death promotes the release of protease which degrades the target proteins. The protein stability and productivity can be significantly influenced by proteolysis activity. Therefore, development of new strategies are necessary for the in situ recovery of target proteins from cell culture media. In this study, in situ recovery was performed by various strategies. Direct addition of Protein A resin with nylon bag leads to cell death by increased shear stress and decrease in production of hCTLA4Ig by protease. Medium exchange through modified flask could recover hCTLA4Ig with high cell viability and low protease activity, on the other hand, the productivity was lower than that of control. When in situ recovery was conducted at day 7 after induction in air-lift bioreactor, 1.94-fold of hCTLA4Ig could be recovered compared to control culture without in situ recovery. Consequently, in situ recovery of hCTLA4Ig from transgenic rice cell culture could enhance productivity significantly and prevent degradation of target proteins effectively.

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73

  • Kim, Yong Hwan;Park, Seur Kee;Hur, Jin Young;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.318-328
    • /
    • 2017
  • Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.

Isolation and Characterization of Major Royal Jelly cDNAs and Proteins of the Honey Bee (Apis cerana)

  • Srisuparbh, Duangporn;Klinbunga, Sirawut;Wongsiri, Siriwat;Sittipraneed, Siriporn
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.572-579
    • /
    • 2003
  • An expressed sequence tag (EST) library was established from the hypopharyngeal glands of Apis cerana. Sixty-six recombinant clones, possessing inserts >500 bp, were randomly selected and unidirectional sequenced. Forty-two of these (63.6%) were identified as homologues of Major Royal Jelly Proteins families 1, 2, 3, and 4 of A. mellifera (AmMRJP) for which MRJP1 was the most abundant family. The open-reading frame of the MRJP1 homologue (AcMRJP1) was 1299 nucleotides that encoded 433 deduced amino acids with three predicted N-linked glycosylation sites. The AcMRJP1 sequence showed 93% and 90% homologies with nucleotide and deduced amino acid sequences of AmMRJP1, respectively. Two complete transcripts of apisimin, and one and two partial transcripts of $\alpha$-glucosidase and glucose oxidase, were also isolated. In addition, the royal jelly proteins of A. cerana were purified and characterized using Q-Sepharose and Sephadex G-200 column chromatography. The native forms of protein peaks A1, A2, B1, and C1 were 115, 55, 50, and 300 kDa, respectively. SDS-PAGE analysis indicated that A1 and C1 were dimeric and oligomeric forms of the 80 kDa and 50 kDa subunits, respectively. The ratio of the total protein quantities of A1 : A2 : B1 : C1 were 2.52 : 4.72 : 1 : 12.21. Further characterization of each protein, using N-terminal and internal peptide sequencing, revealed that the respective proteins were homologues of MRJP3, MRJP2, MRJP1, and MRJP1 of A. mellifera.

Extracellular Secretion of a Maltogenic Amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its Application on the Production of Branched Maltooligosaccharides

  • Cho, Mee-Hyun;Park, Sang-Eun;Lee, Myung-Hun;Ha, Suk-Jin;Kim, Hae-Yeong;Kim, Myo-Jeong;Lee, Sung-Joon;Madsen, Soren M.;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • A maltogenic amylase gene from Lactobacillus gasseri ATCC33323 (LGMA) was expressed in Lactococcus lactis MG1363 using the P170 expression system. The successful production of recombinant LGMA (rLGMA) was confirmed by the catalytic activity of the enzyme in liquid and solid media. The N-terminal amino acid sequencing analysis of the rLGMA showed that it was Met-Gln-Leu-Ala-Ala-Leu-, which was the same as that of genuine protein, meaning the signal peptide was efficiently cleaved during secretion to the extracellular milieu. The optimal reaction temperature and pH of rLGMA ($55^{\circ}C$ and pH 5, respectively) and enzymatic hydrolysis patterns on various substrates (${\beta}$-cyclodextrin, starch, and pullulan) supported that rLGMA was not only efficiently secreted from the Lactococcus lactis MG1363 but was also functionally active. Finally, the branched maltooligosaccharides were effectively produced from liquefied com starch, by using rLGMA secreted from Lactococcus lactis, with a yield of 53.1%.

Genetic Synthesis and Applications of Repetitive Protein Polymers (반복단위 단백질 고분자의 유전공학적 합성 및 응용)

  • Park, Mi-Sung;Choi, Cha-Yong;Won, Jong-In
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • This study introduces the characteristics and some applications of repetitive polypeptides, especially to the biomaterial, tissue engineering scaffolds, drug delivery system, and DNA separation systems. Since some fibrous proteins, which consist of repeating peptide monomers, have been reported that their physical properties are changed dramatically by means of temperature alteration or pH shifting. For that reason, fibrous protein-mimetic polypeptides, which are produced by the recombinant technology, can be applied to the diverse biological fields. Repetitive polypeptides can also be used in the bioseparation area such as DNA sequencing, because they make DNA separation possible in free-solution electrophoresis by conjugating DNA fragments to them. Moreover, artificial synthesis of repetitive polypeptides helps to demonstrate the correlations between mechanical properties and structures of natural protein polymer, which have been proven that repetitive domains are affected by the sequence of the repeating domains and the number of repeating subunits. Repetitive polypeptides can be biologically synthesized using some special cloning methods, which are represented here. Recursive directional ligation (RDL) and controlled cloning method (CCM) have been proposed as excellent cloning methods in that we can control the number of repetition in the multimerization of polypeptides and the components of repetitive polypeptides by either method.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

A Cold-Adapted Carbohydrate Esterase from the Oil-Degrading Marine Bacterium Microbulbifer thermotolerans DAU221: Gene Cloning, Purification, and Characterization

  • Lee, Yong-Suk;Heo, Jae Bok;Lee, Je-Hoon;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.925-935
    • /
    • 2014
  • A cold-adapted carbohydrate esterase, CEST, belonging to the carbohydrate esterase family 6, was cloned from Microbulbifer thermotolerans DAU221. CEST was composed of 307 amino acids with the first 22 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the mature enzyme were 31,244 Da and pH 5.89, respectively. The catalytic triad consisted of residues Ser37, Glu192, and His281 in the conserved regions: GQSNMXG, QGEX(D/N), and DXXH. The three-dimensional structure of CEST revealed that CEST belongs to the ${\alpha}/{\beta}$-class of protein consisted of a central six-stranded ${\beta}$-sheet flanked by eight ${\alpha}$-helices. The recombinant CEST was purified by His-tag affinity chromatography and the characterization showed its optimal temperature and pH were $15^{\circ}C$ and 8.0, respectively. Specifically, CEST maintained up to 70% of its enzyme activity when preincubated at $50^{\circ}C$ or $60^{\circ}C$ for 6 h, and 89% of its enzyme activity when preincubated at $70^{\circ}C$ for 1 h. The results suggest CEST belongs to group 3 of the cold-adapted enzymes. The enzyme activity was increased by $Na^+$ and $Mg^{2+}$ ions but was strongly inhibited by $Cu^+$ and $Hg^{2+}$ ions, at all ion concentrations. Using p-nitrophenyl acetate as a substrate, the enzyme had a $K_m$ of 0.278 mM and a $k_{cat}$ of $1.9s^{-1}$. Site-directed mutagenesis indicated that the catalytic triad (Ser37, Glu192, and His281) and Asp278 were essential for the enzyme activity.

Expression of Human Lactoferricin in HC11 Cells (HC11 세포에서 인체 락토페리신의 발현)

  • Nam, Myoung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • Lactofenicin is an antibacterial peptide fragment (about 5 kD) derived from lactoferrin (80 kD) that displays the various biological functions. The production of a human lactoferricin (Lactoferricin H) in mouse HC11 mammary epithelial cells was achieved by placing its cDNA under the control of the bovine ${\beta}$-casein gene. To express lactoferricin H in this cell culture system, constructed a hybride-splice signal consisting of bovine ${\beta}$-casein intron I and rabbit ${\beta}$-globin intron II, and a DNA fragment spanning intron 8 of the bovine ${\beta}$-casein gene. Expression of lactofenicin H from this expression vector was identified by RT-PCR, northern and dot blot analysis. RT-PCR using total RNA of HC11 cells transfected with pBL1-cin expression vector yielded a product identified as having a size of the 150bp. Northern blot analysis was identified about 2.3 kb. In dot blot analysis, recombinant lactofenicin H was recognized with anti-human lactofrrnin polyclonal antibody.

  • PDF