• 제목/요약/키워드: Recombinant fermentation

검색결과 173건 처리시간 0.026초

국내기탁기관의 현황 2

  • 오두환
    • 미생물과산업
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 1989
  • Industrial strain Improvement is concerned with developing or modifying microorga-nisms used In production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific cilarafteristic such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empiri-cal approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids. organic acids andenzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is it homoserine auxotroph with AEC, TA double metabolicanalogue resistant markers. The yield reaches 100g/1. Resides, the citric acid-producing organism Aspergillus nuger, Co827, its productivity reches the advanced level in the world, is also the result of a series mutations expecially with Co Y-radiation. The thermostable a-amylaseroducing strain A 4041 is the third example. By combining physical and chemical multations. the strain ,A 4041becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The a-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus nigerSP56 its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV_11. Recently recombinant DNA approach Provides a worth while alternative strategy to Industrial strain improve-ment. This technique had been used by us to increase the thermostable a-amylase production and on some genetic researches.

  • PDF

Saccharomyces cerevisiae M3G3를 이용한 1,2-Propanediol의 생산 최적화 (1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3)

  • 구자룡;;윤현식
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.439-442
    • /
    • 2011
  • 1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.

Some Properties and Microbial Community Changes of Gul (Oyster) Jeotgal during Fermentation

  • Kim, Jeong A;Yao, Zhuang;Kim, Hyun-Jin;Kim, Jeong Hwan
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.343-349
    • /
    • 2019
  • Gul jeotgals (GJs) were prepared using solar salt aged for 3 years. One sample was fermented using starters, such as Bacillus subtilis JS2 and Tetragenococcus halophilus BS2-36 (each $10^6CFU/g$), and another sample was fermented without starters for 49 days at $10^{\circ}C$. Initial counts of bacilli and lactic acid bacteria (LAB) in non-starter GJ were found to be $3.20{\times}10^2$ and $7.67{\times}10^1CFU/g$ on day 0, and increased to $1.37{\times}10^3$ and $1.64{\times}10^6CFU/g$ on day 49. Those of starter GJ were found to be $2.10{\times}10^5$ and $3.30{\times}10^7CFU/g$ on day 49, indicating the growth of starters. The pH values of GJ were $5.93{\pm}0.01$ (non-starter) and $5.92{\pm}0.01$ (starter) on day 0 and decreased to $5.78{\pm}0.01$ (non-starter) and $5.75{\pm}0.01$ (starter) on day 49. Amino-type nitrogen (ANN) production increased continuously during fermentation, and $407.19{\pm}15.85$ (non-starter) and $398.04{\pm}13.73$ (starter) mg% on day 49. Clone libraries of 16S rRNA genes were constructed from total DNA extracted from non-starter GJ on days 7, 21, and 42. Nucleotide sequences of Escherichia coli transformants harboring recombinant pGEM-T easy plasmid containing 16S rRNA gene inserts from different bacterial species were analyzed using BLAST. Uncultured bacterium was the most dominant group and Gram - bacteria such as Acidovorax sp., Afipia sp., and Variovorax sp. were the second dominant group. Bacillus amyloliquefaciens (day 7), Bacillus velezensis (day 21 and 42), and Bacillus subtilis (day 42) were observed, but no lactic acid bacteria were detected. Acidovorax and Variovorax species might play some role in GJ fermentation. Further studies on these bacteria are necessary.

연쇄상구균(Streptococcus mutans GS-5)의 항원단백질 AgI/II의 N-terminus절편에 대한 항체형성 (Generation of antibodies against N-terminus fragment of AgI/II protein from Streptococcus mutans GS-5)

  • 한지혜;백병주;양연미;박정렬;김재곤
    • 대한소아치과학회지
    • /
    • 제33권3호
    • /
    • pp.401-410
    • /
    • 2006
  • 치아 우식은 구강 내 미생물에 의해 치아 석회 조직의 일부가 용해되고 파괴되는 감염성 질환이다. 치아 우식의 원인균은 Streptococcus mutans와 같은 Mutans streptococci로 알려져 있고, 이 미생물이 치면에 접착하여 군집을 형성하는 능력이 균의 독성에 중요한 역할을 한다. S. mutans가 치면의 타액성 피막에 부착하는 데에는 AgI/II와 같은 세포표면의 섬유성 단백질을 매개로 한다. 그러므로, AgI/II는 S. mutans GS-5에 대한 백신 개발에 적절한 목표가 된다. 본 실험은 S. mutans GS-5로부터 AgI/II 유전자를 복제하고 염기서열분석을 하였다. 복제된 AgI/II와 앞서 보고된 S. mutans GS-5의 해당 부위의 280개의 핵산은 완벽하게 일치하였다. 복제된 유전자를 두 부위로 절단하여 형질전환을 통해 재조합 단백질인 AgI/IImr을 얻었고, 정제된 재조합 단백질을 쥐에게 주입하여 다클론 항체를 얻었다. 추출된 다클론 항체는 AgI/IImr항원단백질에 반응하였고, 대조군으로 쓰인 단백질에는 반응하지 않았다.

  • PDF

흑액 유래 유기산의 Escherichia coli MG 1655 성장에 미치는 영향 탐색 (Effect of Organic Acids Derived from Black Liquor on Growth of Selected Escherichia coli MG 1655)

  • 문준관;엄병환
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권6호
    • /
    • pp.758-767
    • /
    • 2014
  • 본 연구는 펄프 흑액 내 포함된 아라비노스를 당기질로 대사할 수 있는 대장균 균주인 Escherichia coli MG 1655를 선별하고 흑액 유래 유기산(초산, 포름산, 및 젖산)이 선별 균주의 성장에 미치는 영향을 관찰하였다. 서로 다른 유기산 농도 및 유기산 조합에 의한 대장균 성장에 미치는 영향을 분석하기 위해서 발효배지 내 다양한 유기산 농도의 조합에 따른 E. coli MG 1665의 성장을 관찰하였다. 유기산 포함된 배지에서의 E. coli MG 1665 배양 실험 결과에 의하면 초산 $1.0g/{\ell}$, 젖산 $1.2g/{\ell}$, 포름산 $0.8g/{\ell}$ 조건에서는 유기산이 포함되지 않은 대조군과 유사한 성장을 보였으나, 초산 $1.5g/{\ell}$, 젖산 $2.0g/{\ell}$, 포름산 $1.2g/{\ell}$ 이상을 포함하는 배지 조건에서는 E. coli MG 1665의 성장이 강하게 억제됨을 관찰하였다. 이와 더불어 유기산들의 혼합된 배지에서는 3종의 유기산 중 포름산이 가장 중요한 요소로 작용함을 알 수 있었다. 결과적으로 흑액 내 아라비노스를 당기질로 이용하여 높은 발효 수율을 얻기 위해서는 흑액 내 포함된 유기산인 초산, 젖산, 포름산이 각각 최소 $1.0g/{\ell}$, $1.2g/{\ell}$, $0.8g/{\ell}$ 이하로 흑액 내 존재하는 유기산 제거 방법을 개발하거나 높은 유기산 농도에서도 정상적인 성장을 갖는 유기산 내성 균주의 개발이 요구될 수 있다.

Expression and Activity of Citrus Phytoene Synthase and $\beta$-Carotene Hydroxylase in Escherichia coli

  • Kim, In-Jung;Ko, Kyong-Cheol;Nam, Tae-Sik;Kim, Yu-Wang;Chung, Won-Il;Kim, Chan-Shick
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.212-218
    • /
    • 2003
  • Citrus phytoene synthase (CitPsy) and ${\beta}$-carotene hydroxylase (CitChx), which are involved in caroteinoid biosynthesis, are distantly related to the corresponding bacterial enzymes from the point of view of amino acid sequence similarity. We investigated these enzyme activities using Pantoea ananatis carotenoid biosynthetic genes and Escherichia coli as a host cell. The genes were cloned into two vector systems controlled by the T7 promoter. SDS-polyacrylamide gel electrophoresis showed that CitPsy and CitChx proteins are normally expressed in E. coli in both soluble and insoluble forms. In vivo complementation using the Pantoea ananatis enzymes and HPLC analysis showed that ${\beta}$-carotene and zeaxanthin were produced in recombinant E. coli, which indicated that the citrus enzymes were functionally expressed in E. coli and assembled into a functional multi-enzyme complex with Pantoea ananatis enzymes. These observed activities well matched the results of other researchers on tomato phytoene synthase and Arabidopsis and pepper ${\beta}$-carotene hydroxylases. Thus, our results suggest that plant carotenoid biosynthetic enzymes can generally complement the bacterial enzymes and could be a means of carotenoid production by molecular breeding and fermentation in bacterial and plant systems.

Construction of L-Threonine Overproducing Escherichia coli by Cloning of the Threonine Operon

  • Lee, Jin-Ho;Oh, Jong-Won;Noh, Kap-Soo;Lee, Hyune-Hwan;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.243-247
    • /
    • 1992
  • The thr operon of Escherichia coli TF427, an $\alpha$-amino-$\beta$-hydroxyvaleric acid (AHV)-resistant threonine overproducer, was cloned in a pBluescriptII $KS^+$ plasmid by complementation of E. coli mutants. All clones contained a common 8.8 kb HindIII-generated DNA fragment and complemented the thrA, thrB, and thrC mutants by showing that these clones contained the whole thr operon. This thr operon was subcloned in the plasmid vectors pBR322, pUC18, and pECCG117, an E. coli/Corynebacterium glutamicum shuttle vector, to form recombinant plasmids pBTF11, pUTF25 and pGTF18, respectively. The subcloned thr operon was shown to be present in a 6.0 kb insert. A transformant of E. coli TF125 with pBTF11 showed an 8~11 fold higher aspartokinase I activity, and 15~20 fold higher L-threonine production than TF125, an AHV-sensitive methionine auxotroph. Also, it was found that the aspartokinase I activity of E. coli TF125 harboring pBTF11 was not inhibited by threonine and its synthesis was not repressed by threonine plus isoleucine.

  • PDF

Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585

  • Jnawali, Hum Nath;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.146-152
    • /
    • 2010
  • Streptomyces clavuligerus NRRL3585 produces a clinically important $\beta$-lactamase inhibitor, clavulanic acid (CA). In order to increase the production of CA, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (gap) was deleted in S. clavuligerus NRRL3585 to overcome the limited glyceraldehyde-3-phosphate pool; the replicative and integrative expressions of ccaR (specific regulator of the CA biosynthetic operon) and claR (Lys-type transcriptional activator) genes were transformed together into a deletion mutant to improve clavulanic acid production. We constructed two recombinant plasmids to enhance the production of CA in the gap1 deletion mutant of S. clavuligerus NRRL3585: pHN11 was constructed for overexpression of ccaR-claR, whereas pHN12 was constructed for their chromosomal integration. Both pHN11 and pHN12 transformants enhanced the production of CA by 2.59-fold and 5.85-fold, respectively, compared with the gap1 deletion mutant. For further enhancement of CA, we fed the pHN11 and pHN12 transformants ornithine and glycerol. Compared with the gap1 deletion mutant, ornithine increased CA production by 3.24- and 6.51-fold in the pHN11 and pHN12 transformants, respectively, glycerol increased CA by 2.96- and 6.21-fold, respectively, and ornithine and glycerol together increased CA by 3.72- and 7.02-fold, respectively.

Saccharomyces cerevisiae 내에서 Bacillus stearothermophilus NO2 CGTnse 유전자의 발현 (Expression of the Bacillus stearothermophilus NO2 CGTase gene in Saccharomyces cerevisiae)

  • 유동주;박현이;전숭종;권현주;남수완;김병우
    • 한국미생물·생명공학회지
    • /
    • 제30권3호
    • /
    • pp.206-209
    • /
    • 2002
  • Bacillus stearothermophilus의 CCTase 유전자(cgtS) 대장균과 효모의 shuttle vector로서 항구적 promoter인 adh l promoter를 함유한 pVT103-U(6.9Kb)에 도입하여 재조합 plasmid pVT-CCTS (9.0Kb)을 구축하고 효모 숙주 S. cerevisiae 2805에서 발현시켰다. 재조합 균주의 항구적 발현계인 2805/pv7-CGTS의 최적 발현조건은 YP배지에 dextrose 2%, pH 5.5, 30"C에서 최적 발효조건이었으며, CCTase의 최대 발현량은 48시간 배양시 0.624unit/mL을 나타내었다. B. stearothermophilus의 signal peptide가 재조합 효모에서도 높은 분비효율을 나타내어서 발현된 효소의 87%가 세포 외로 분비 생산되었다.산되었다.

Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration

  • Kim, Hyun Joong;Kim, Yong Hyun;Shin, Ji-Hyun;Bhatia, Shashi Kant;Sathiyanarayanan, Ganesan;Seo, Hyung-Min;Choi, Kwon Young;Yang, Yung-Hun;Park, Kyungmoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1108-1113
    • /
    • 2015
  • Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.