• 제목/요약/키워드: Recombinant fermentation

검색결과 173건 처리시간 0.03초

Pyrococcus furiosus의 β-1,3-glucanase를 처리한 laminarin 분해 산물을 이용한 바이오 에탄올의 생산 (Application of β-1,3-Glucanase from Pyrococcus furiosus for Ethanol Production using Laminarin)

  • 김동균;김은영;김유리;김중균;이한승;공인수
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.68-73
    • /
    • 2011
  • 갈조류 유래의 다당류인 laminarin을 기질로써 호열성 미생물인 Pyrococcus furiosus의 $\beta$-1,3-glucanase와 반응 시킨 뒤, 분해산물을 yeast를 이용한 알코올 발효과정을 통하여 에탄올을 생산하고자 하는 연구를 수행하였다. 33 kDa (297 a.a, 894 bp)의 재조합 $\beta$-1,3-glucanase를 대장균에게 발현 후 순수하게 정제 하였으며, 정제한 $\beta$-1,3-glucanase와 laminarin을 반응시킨 결과 단당을 포함하여 oligo당 형태로 분해됨을 TLC와 HPLC로써 확인하였다. 그리고 이러한 분해산물을 에탄올 생산 배지의 유일한 탄소원으로써 첨가하여 yeast를 배양한 결과 48시간뒤에는 세포 외로 최소 0.3%의 알코올을 생산함을 gas chromatography로써 확인하였다. 따라서 $\beta$-1,3-glucanase와 laminarin의 최적 분해반응 및 yeast의 최적 알코올 발효 조건을 확립한다면 본 연구의 방법을 이용한 해조류로부터의 bio-ethanol의 생산을 성공적으로 수행 할 수 있으리라고 판단된다.

저온 유도 시스템을 가진 재조합 대장균을 이용한 남극 세균 Flavobacterium frigoris PS1 유래 결빙방지단백질의 Pilot-scale 생산 (Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System)

  • 김은재;이준혁;이성구;한세종
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.345-349
    • /
    • 2015
  • Antifreeze proteins (AFP) inhibit growth and recrystallization of ice, and permit organisms to survive in cold environments. The AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris icebinding protein), was produced in E. coli using a cold shock induction system. The culture temperature was shifted from $37^{\circ}C$ to $15^{\circ}C$ and a 20 L culture scale was used. The final weights of dried cell and FfIBP were estimated to be 126 g and 8.4 g, respectively. The thermal hysteresis (TH) activity ($1.53^{\circ}C$) of the produced FfIBP was 3.6-fold higher than that of the LeIBP (Leucosporidium ice-binding protein) produced in Picha. The current study demonstrates that large-scale production of FfIBP was successful and the result could be extended to further application studies using recombinant AFPs.

Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구 (Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase)

  • 이상만
    • 한국미생물·생명공학회지
    • /
    • 제36권4호
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase(PGA, benzylpenicillinamidohydrolase, EC 3.5.1.11)는 penicillin G를 phenylacetic acid(PAA)와 6-aminopenicillanic acid(6-APA)로 분해하는 효소이다. Escherichia coli(E. coli) ATCC 11105의 PGA는 24 kDa의 small subunit과 65 kDa의 large subunit으로 구성되어 있고, precursor polypeptide에서 signal peptide와 spacer peptide가 절단되어 활성을 가진 heterodimer가 형성된다. 본 연구에서는 E. coli ATCC 11105에서 PCR(polymerase chain reaction)을 통해 증폭한 pga gene을 expression vector에 넣어 pET-pga plasmid를 제작하였고, 이것을 E. coli BL21 (DE3) 균주에 형질 전환하여 PGA를 발현하고 그 활성을 분석하였다. E. coli BL21(DE3)/pET-pga 균주의 고밀도 배양액을 SDS-PAGE로 분석 했을 때, PGA의 precursor, large subunit, 그리고 small subunit으로 보이는 protein band가 나타났으며, PGA가 soluble form의 precursor로 발현되어 processing을 거쳐서 large subunit과 small subunit으로 절단되기도 하고, 일부는 insoluble form의 precursor로 발현되기도 하는 것으로 생각된다. 유가배양시 온도변화 전략을 사용하여 고농도 배양에서 발현을 유도하였다. 온도변화 전략은 $37^{\circ}C$에서 $28^{\circ}C$를 거쳐 $22^{\circ}C$로 3단계로 변화시켰다. 이러한 전략으로 PGA활성은 19.6 U/mL이며 균체량은 600 nm에서 흡광도가 62까지 도달하였다.

Extracellular 5-Aminolevulinic Acid Production by Escherichia coli Containing the Rhodopseudomonas palustris KUGB306 hemA Gene

  • Choi, Han-Pil;Lee, Young-Mi;Yun, Cheol-Won;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1136-1140
    • /
    • 2008
  • The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'-phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).

Large-Scale Refolding and Enzyme Reaction of Human Preproinsulin for Production of Human Insulin

  • Kim, Chang-Kyu;Lee, Seung-Bae;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1742-1750
    • /
    • 2015
  • Human insulin is composed of 21 amino acids of an A-chain and 30 amino acids of a B-chain. This is the protein hormone that has the role of blood sugar control. When the recombinant human proinsulin is expressed in Escherichia coli, a serious problem is the formation of an inclusion body. Therefore, the inclusion body must be denatured and refolded under chaotropic agents and suitable reductants. In this study, H27R-proinsulin was refolded from the denatured form with β-mercaptoethanol and urea. The refolding reaction was completed after 15 h at $15^{\circ}C$, whereas the reaction at $25^{\circ}C$ was faster than that at $15^{\circ}C$. The refolding yield at $15^{\circ}C$ was 17% higher than that at $25^{\circ}C$. The refolding reaction could be carried out at a high protein concentration (2 g/l) using direct refolding without sulfonation. The most economical and optimal refolding condition for human preproinsulin was 1.5 g/l protein, 10 mM glycine buffer containing 0.6 M urea, pH 10.6, and 0.3 mM β-mercaptoethanol at $15^{\circ}C$ for 16 h. The maximum refolding yield was 74.8% at $15^{\circ}C$ with 1.5 g/l protein. Moreover, the refolded preproinsulin could be converted into normal mature insulin with two enzymes. The average amount of human insulin was 138.2 g from 200 L of fermentation broth after enzyme reaction with H27R-proinsulin. The direct refolding process for H27R-proinsulin was successfully set up without sulfonation. The step yields for refolding and enzyme reaction were comparatively high. Therefore, our refolding process for production of recombinant insulin may be beneficial to the large-scale production of other biologically active proteins.

효모균에서의 Plasmid 번식체계와 혼성유전자 발현 (Plasmid Propagation and Heterologous Gene Expression in Recombinant Yeast)

  • 홍억기
    • KSBB Journal
    • /
    • 제8권2호
    • /
    • pp.133-142
    • /
    • 1993
  • 효모균에서의 유전자 재조합에 의한 단백절 생산에 미치는 유전학적, 환경적인 요인의 영향을 연구하였. Plasmid 안정도와 개수는 $REP^+$ 체계 에서 대단히 높은 반면, rep 체계에서는 매우 낮았다. $2{\mu}m$ circle plasmid genome을 포함하는 plasmid의 경우에 있어서. $[cir^o]$ 형 세포에서의 plasmid 안정도와 개수가 $[cir^+]$형 세포에서보다 높기때문에 $[cir^+o]$형 세포가 더 선호되는 세포였다. 유전자 발현은 plasmid 개수와 안정도에 좌우 되었다. 촉진제의 양이 유전자 발현에 매우 중요 한 역할을 했다. 유전자 발현의 촉진에 필요한 g떠actose의 농도는 0.8% 이 변 충분했다. 높은 안정 도와 개수를 갖는 plasmid의 경우 촉진속도는 매우 빨랐다. Galactose가 배양의 시작부분부터 첨가 될 때가 mid-exponential ph잃e에 첨가될 때보다 유전자 발현의 극대점에 이르는 시간이 걸었다. 상대적 촉진제의 양이 증가함에 따라 glucc잉e억제 현상은 감소되었다.

  • PDF

Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris

  • Yang, Yufeng;Huang, Lei;Wang, Jufang;Wang, Xiaoning;Xu, Zhinan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1516-1524
    • /
    • 2014
  • Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and $55^{\circ}C$. In addition, it displayed very high thermal stability, with a half-life of 82 min at $60^{\circ}C$. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.

재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산 (Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Microbial β-Galactosidase of Pediococcus pentosaceus ID-7: Isolation, Cloning, and Molecular Characterization

  • Lee, Ji-Yeong;Kwak, Mi-Sun;Roh, Jong-Bok;Kim, Kwang;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.598-609
    • /
    • 2017
  • Pediococcus pentosaceus ID-7 was isolated from kimchi, a Korean fermented food, and it showed high activity for lactose hydrolysis. The ${\beta}$-galactosidase of P. pentosaceus ID-7 belongs to the GH2 group, which is composed of two distinct proteins. The heterodimeric LacLM type of ${\beta}$-galactosidase found in P. pentosaceus ID-7 consists of two genes partially overlapped, lacL and lacM encoding LacL (72.2 kDa) and LacM (35.4 kDa). In this study, Escherichia coli MM294 was used for the production of LacL, LacM, and LacLM. These three types of recombinant proteins were expressed, purified, and characterized. The specific activities of LacLM and LacL were 339 and 31 U/mg, respectively. However, activity was not detected with LacM alone. The optimal pH of LacLM and LacL was pH 7.5 and pH 7.0, and the optimal temperature of LacLM and LacL was $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimal temperature changes indicate that LacLM is able to achieve higher activity at a relatively lower temperature. LacLM was strongly activated by $Mg^{2+}$, $Mn^{2+}$, and $Zn^{2+}$, which was not true for LacL. Consistent with this, EDTA strongly inactivated LacLM and LacL, but the presence of reducing agents did not dramatically alter the activity. Taken together, multiple alignment of amino acid sequences and phylogenetic analysis results of LacL and LacM of P. pentosaceus ID-7 suggest the evolution of LacL into LacLM and that the use of divalent metal ions results in higher activity.

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.