• Title/Summary/Keyword: Recombinant expression

Search Result 1,558, Processing Time 0.022 seconds

Cloning, expression, and activity of type IV antifreeze protein from cultured subtropical olive flounder (Paralichthys olivaceus)

  • Lee, Jong Kyu;Kim, Hak Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.8
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Antifreeze proteins (AFPs) lower the freezing point but not the melting point of aqueous solutions by inhibiting the growth of ice crystals via an adsorption-inhibition mechanism. However, the function of type IV AFP (AFP IV) is questionable, as its antifreeze activity is on the verge of detectable limits, its physiological concentration in adult fish blood is too low to function as a biological antifreeze, and its homologues are present even in fish from tropic oceans as well as freshwater. Therefore, we speculated that AFP IV may have gained antifreeze activity not by selective pressure but by chance. To test this hypothesis, we cloned, expressed, and assayed AFP IV from cultured subtropical olive flounder (Paralichthys olivaceus), which do not require antifreeze protein for survival. Among the identified expressed sequence tags of the flounder liver sample, a 5'-deleted complementary DNA (cDNA) sequence similar to the afp4 gene of the longhorn sculpin was identified, and its full-length cDNA and genome structure were examined. The deduced amino acid sequence of flounder AFP IV shared 55, 53, 52, and 49 % identity with those of Pleuragramma antarcticum, Myoxocephalus octodecemspinosus, Myoxocephalus scorpius, and Notothenia coriiceps, respectively. Furthermore, the genomic structure of this gene was conserved with those of other known AFP IVs. Notably, the recombinant AFP IV showed a weak but distinct thermal hysteresis of $0.07{\pm}0.01^{\circ}C$ at the concentration of 0.5 mg/mL, and ice crystals in an AFP IV solution grew star-shaped, which are very similar to those obtained from other polar AFP IVs. Taken together, our results do not support the hypothesis of evolution of AFP IV by selective pressure, suggesting that the antifreeze activity of AFP IV may have been gained by chance.

Production of toxoid and monoclonal antibody by mutation of toxin gene from Escherichia coli O157: H7 for detection of low levels of the toxin I. Expression of toxoid by mutagenesis of verotoxin gene (대장균 O157:H7의 독소 생성 유전자의 변이에 의한 변성독소 생산 및 미량독소 검출을 위한 단클론성 항체생산 I. 독소 생성 유전자의 변이에 의한 변성독소의 발현)

  • Kim, Yong-hwan;Kang, Ho-jo;Kim, Sang-hyun;Lee, Eun-joo;Cha, In-ho;Lee, Woo-won
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.189-195
    • /
    • 2001
  • Single base substitution and deletion mutation have been introducted into the verotoxin 2 (VT2)A subunit gene from O157:H7 isolates to reduce cytotoxicity of VT2 and the cytotoxicity between wild type toxin and mutant toxoid were compared. A M13-derived recombinant plasmid pEP19RF containing a 940bp EcoRI-PstI fragment of VT2A gene was constructed for oligonucleotide-directed mutagenesis. The duoble mutant pDOEX was constructed by point and deletion mutation of two different highly conserved regions of VT2A encoding active site cleft of enzymatic domain. The key residue, Glu 167(GAA) and the pentamer(WGRIS) consisting of the enzymatic domain were replaced by ASP(GAC) and completely deleted in nucleotide sequence analysis of mutant, respectively. In the comparision of vero cell cytotoxicity between wide type toxin and toxoid from mutant, the wild type toxin expressed cytotoxicity in dilution of $10^{-6}$, but the toxid from mutant did not show cytotoxicity to vero cells.

  • PDF

High-level production and initial crystallization of a Fe65 PTB domain (Fe65단백질의 한 PTB 도메인에 대한 과발현 및 초기 결정화)

  • Ro, Seung-Hyun;Ha, Nam-Chul
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.18-23
    • /
    • 2007
  • Fe65, a neuron-specific adaptor protein, has two phosphotyrosine binding (PTB) domains. The second PTB (PTB2) domain interacts with intracellular domain fragment (AICD) of amyloid beta precursor protein (APP). Recent studies suggested that tile complex is composed of AICD and Fe65 transactivates genes that are responsible for neuronal cell death in Alzheimer's disease (AD). Therefore, a compound inhibiting the interaction between Fe65 and AICD can be a drug candidate to treat AD. However, it remains unclear how Fe65 recognizes AICD at a molecular level. Here, we report high-level production of the PTB2 domain of Fe65 in the baculovirus system. We found that the baculovirus system is an efficient method to obtain the Fe65 PTB2 domain, compared with the bacterial and mammalian expression systems. The purified recombinant protein was used for crystallization to determine its crystal structure helping to understand the molecular mechanism of Fe65-dependent signaling and to design its inhibitors.

Cloning and Expression of Alginate Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양미생물 Streptomyces sp. M3로부터 alginate lyase의 클로닝 및 발현)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1522-1528
    • /
    • 2009
  • A marine bacterium was isolated from brown seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence revealed that the strain belongs to Streptomyces like strain ALG-5 which was reported previously. New alginate lyase gene of Streptomyces sp. M3 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. The consensus sequences of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the M3 alginate lyase amino acid sequences. The homology model for the M3 alginate lyase showed a characteristic structure of $\beta$-jelly roll fold main domain like alyPG from Corynebacterium sp. ALY-1. The homogenate of the recombinant E. coli with the alginate lyase gene showed more degrading activity for polyguluronate block than polymannuronate block. The results from the multiple alignments and the homology modeling elucidated in the M3 alginate lyase can be classified into family PL-7.

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

Molecular Characterization of the Levansucrase Gene from Pseudomonas aurantiaca S-4380 and Its Expression in Escherichia coli

  • Jang, Eun-Kyung;Jang, Ki-Hyo;Isaac Koh;Kim, In-Hwan;Kim, Seung-Hwan;Kang, Soon-Ah;Kim, Chul-Ho;Ha, Sang-Do;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.603-609
    • /
    • 2002
  • DFA IV is di-D-fructose-2,6':6,2'-dianhydride, consisting of two fructose residues. It can be enzymatically synthesized from levan by levan fructotransferase, and can be used for mineral absorption. Understanding of the structure and composition of levan is important to obtain high-level production of DFA IV. A bacterial strain, Pseudomonas aurantiaca 5-4380, was identified to produce low-branched levan, and the levansucrase gene (lsch) from this bacterium was found to be composed of 1,275 Up coding for a protein of 424 amino acids, with an estimated molecular weight of 47 kDa. The bacterial levansucrase gene was expressed in Escherichia coli DH5${\alpha}$ by its own promoter and lac promoter. The recombinant levansucrase was produced in soluble form with 170U of levansucrase activity from 1-ml E. coii culture broth. The expressed enzyme from the clone showed similar biochemical properties, such as size of active levansucrase, degree of branching, and optimum temperature, with P.aurantiaca 5-4380 levansucrase.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Thermostable Sites and Catalytic Characterization of Xylanase XYNB of Aspergillus niger SCTCC 400264

  • Li, Xin Ran;Xu, Hui;Xie, Jie;Yi, Qiao Fu;Li, Wei;Qiao, Dai Rong;Cao, Yi;Cao, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • In order to improve the expression of heat-resistant xylanase XYNB from Aspergillus niger SCTCC 400264, XynB has been cloned into Pichia pastoris secretary vector pPIC9K. The XynB production of recombinant P. pastoris was four times that of E. coli, and the $V_{max}$ and specific activity of XynB reached $2,547.7{\mu}mol/mg$ and 4,757 U/mg, respectively. XynB still had 74% residual enzyme activity after 30 min of heat treatment at $80^{\circ}C$. From the van der Waals force analysis of XYNB (ACN89393 and AAS67299), there is one more oxygen radical in AAS67299 in their catalytic site, indicating that the local cavity is much more free, and it is more optimal for substrate binding, affinity reaction, and proton transfer, etc, and eventually increasing enzyme activity. The H-bonds analysis of XYNB indicated that there are two more H-bonds in the 33rd Ser of XYNB (AAS67299) than in the 33rd Ala(ACN89393 ), and two H-bonds between Ser70 and Asp67.

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

Characterization of a Glutamate Decarboxylase (GAD) from Enterococcus avium M5 Isolated from Jeotgal, a Korean Fermented Seafood

  • Lee, Kang Wook;Shim, Jae Min;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1216-1222
    • /
    • 2017
  • To develop starters for the production of functional foods or materials, lactic acid bacteria producing ${\gamma}-aminobutyric$ acid (GABA) were screened from jeotgals, Korean fermented seafoods. One isolate producing a high amount of GABA from monosodium $\text\tiny{L}$-glutamate (MSG) was identified as Enterococcus avium by 16S rRNA gene sequencing. E. avium M5 produced $18.47{\pm}1.26mg/ml$ GABA when incubated for 48 h at $37^{\circ}C$ in MRS broth with MSG (3% (w/v)). A gadB gene encoding glutamate decarboxylase (GAD) was cloned and overexpressed in E. coli BL21 (DE3) using the pET26b (+) expression vector. Recombinant GAD was purified through a Ni-NTA column and the size was estimated to be 53 kDa by SDS-PAGE. Maximum GAD activity was observed at pH 4.5 and $55^{\circ}C$and the activity was dependent on pyridoxal 5'-phosphate. The $K_m$ and $V_{max}$ values of GAD were $3.26{\pm}0.21mM$ and $0.0120{\pm}0.0001mM/min$, respectively, when MSG was used as a substrate. Enterococcus avium M5 secretes a lot of GABA when grown on MRS with MSG, and the strain is useful for the production of fermented foods containing a high amount of GABA.