Temple, Jeffrey S.;Song, In-Seok;Burns, Kathleen H.;Bateman, Robert C.
Animal cells and systems
/
v.2
no.2
/
pp.243-248
/
1998
We have partially sequenced glutaminyl cyclases from several mammalian and one avian species and found that the two cysteine residues of the human glutaminyl cyclase are completely conserved. The mammalian glutaminyl cyclase has been reported to possess reactive thiols (Busby, Jr, et aI., 1987, J BioI Chern 262, 8532-8536). Mutagenesis of these cysteine residues, however, resulted in only a slight decrease in enzyme activity. Likewise, the recombinant human enzyme was completely resistant to attempted chemical modification of the putative reactive thiols. Although the human glutaminyl cyclase did not appear to have reactive thiols, it was sensitive to diethylpyrocarbonate and acetylimidazole, indicating the presence of functionally important histidine and tyrosine residues which could act as acid/base catalysts. Almost identical deuterium solvent isotope effect (1.2 vs 1.3) upon the reaction by the human and papaya enzymes, respectively, provides an evidence both animal and plant glutaminyl cyclases catalyze pyroglutamyl-peptide formation by intramolecular cyclization.
A gene encoding a putative alanine racemase in B. pseudomycoides was cloned and expressed in Escherichia coli BL21(DE3) using a pET-21 vector harbouring 6xHistidine tag. Affinity purification of the recombinant alanine racemase with a nickel resin resulted in one band by SDS-PAGE analysis. The purified enzyme showed a molecular weight of 46 kDa. The enzyme was the most active toward L-alanine and secondly D-alanine, implying that the enzyme is an alanine racemase. D-cysteine significantly inhibited the enzyme activity and also L-cysteine to a lesser extent. The enzyme was considerably activated by addition of pyridoxal-5'-phosphate (PLP), showing that 73% increase in activity was observed at 0.3 mM, compared to control. The enzyme was the most active at pH 9.0 and more stable at alkaline pHs than acidic pHs.
Cha, Jae-Ho;Matsuoka, Satoshi;Chan, Helen;Yukawa, Hideaki;Inui, Masayuki;Doi, Roy H.
Journal of Microbiology and Biotechnology
/
v.17
no.11
/
pp.1782-1788
/
2007
Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.
The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.
Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.
Park, Mi-Ran;Ryu, Hwa-Ja;Kim, Do-Man;Choe, Jun-Yong;John F. Robyt
Journal of Microbiology and Biotechnology
/
v.11
no.4
/
pp.628-635
/
2001
Recombinant E. coli DH5$\alpha$ harboring a dextransucrase gene (dsrB742) produced an extracellular dextransucrase in a 2% sucrose medium. The enzyme was purified by DEAE-Sepharose and Phenyl-Sepharose column chromatographies upto a 142.97-fold purification with a 11.11% recovery to near homogeneity. The enzyme had a calculated molecular mass of 168.6 kDa, which was in good agreement with the activity band of 170 kDa on a nondenaturing SDS-PAGE. An expression plasmid was constructed by inserting the dsrB742 into a pRSET expression vector. The activity after expression in E. coli BL21(DE3)pLysS increased about 6.7-fold compared to the extracellular dextransucrase from L. mesenteroides B-742CB. The expressed and purified enzyme from the clone showed similar biochemical properties (acceptor reaction, size of active dextransucrase, optimum pH, and temperature) to B-742CB dextransucrase, however, the ability to synthesize ${\alpha}$-(1$\rightarrow$3) branching decreased in comparison to that of L. mesenteroides B-742CB dextransucrase.
Zol, Muhamad Najmi Bin;Shuhaimi, Muhammad Firdaus Bin;Yu, Jimin;Lim, Yejee;Choe, Jae Wan;Bae, Sungjun;Kim, Han S.
Membrane and Water Treatment
/
v.11
no.3
/
pp.195-200
/
2020
In this study, a biocatalyst composite was prepared by immobilizing oxidoreductases onto Cu-activated zeolite to facilitate biochemical decomposition of 4-chlorophenol (4-CP). 4-CP monooxygenase (CphC-I) was cloned from a 4-CP degrading bacterium, Pseudarthrobacter chlorophenolicus A6, and then overexpressed and purified. Type X zeolite was synthesized from non-magnetic coal fly ash using acetic acid treatment, and its surfaces were coated with copper ions via impregnation (Cu-zeolite). Then, the recombinant oxidative and reductive enzymes were immobilized onto Cu-zeolite. The enzymes were effectively immobilized onto the Cu-zeolite (79% of immobilization yield). The retained catalytic activity of CphC-I after immobilization was 0.3423 U/g-Cu-zeolite, which was 63.3% of the value of free enzymes. The results of this study suggest that copper can be used as an effective enzyme immobilization binder because it provides favorable metalhistidine binding between the enzyme and Cu-zeolite.
A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.
4-Aminobutyrate aminotransferase plays an essential role in the 4-aminobutyric acid shunt, converting 4-aminobutyrate to succinic semialdehyde. Recombinant 4-aminobutyrate aminotransferases were overexpressed as their catalytically active forms in E. coli by coproduction with thioredoxin and their solubilities were also dramatically increased. In order to study the structural and functional aspects of the C-terminal domain of brain 4-aminobutyrate aminotransferase, we have constructed a C-terminal mutant of pig brain 4-aminobutyrate aminotransferase and analyzed the functional and structural roles of C-terminal amino acids residues on the enzyme. The deletion of five amino-acid residues from C-terminus did not interfere with the kinetic parameters and functional properties of the enzyme. Also, the deletion did not affect the dimeric structure of the protein aligned along the subunit interface at neutral pH. However, the deletion of the C-terminal region of the protein changed the stability of its dimeric structure at acidic pH. The dissociation of the enzyme acidic, facilitated by the deletion of five amino acids from C-terminus, abolished the catalytic activity.
An engineered cDNA from Phanerochaete chrysosporium encoding both the mature and propeptide-sequence regions of lignin peroxidase H2 (Lip H2) was overexpressed in Escherichia coli BL21 (DE3) to evaluate its catalytic characteristics and potential application as a pollution scavenger. All expressed proteins were aggregated in an inactive inclusion body, which might be due to inherent disulfide bonds. Active enzyme was obtained by refolding with glutathione-mediated oxidation in refolding solution containing $Ca^{2+}$, heme, and urea. Propeptide-sequence region was not processed as evidenced by N-terminal sequence analysis. Recombinant Lip H2 (rLip H2) had the same physical properties of the native protein but differed in the $K_{cat}$. Catalytic efficiency ($k_{cat}/K_m$) of rLip H2 was slightly higher than that of the native enzyme. In order to express an active protein, fusion systems with thioredoxin or Dsb A, which have disulfide isomerase activity, were used. The fused proteins expressed by the Dsb A fusion vector were aggregated, whereas half of the thioredoxin fusion proteins were recovered as a soluble form but still catalytically inactive. These results suggest that Lip H2 may not be expressed as an active enzyme in Escherichia coli although the activity can be recovered by in vitro refolding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.