• Title/Summary/Keyword: Recombinant DNA Techniques in yeast

Search Result 3, Processing Time 0.022 seconds

A Study of Immunogenicity and Reactogenicity of Hepatitis B Vaccine Made by Recombinant DNA Techniques in Yeast (효모재조합 DNA B형 간염백신의 면역효과에 관한 연구)

  • Min, Chang-Hong;Kim, Kyo-Myung;Lee, Kyu-Man
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.2
    • /
    • pp.243-249
    • /
    • 1986
  • A study of the immunogenicity and reactogenicity of two doses of lot H(10, 20 mcg), two doses of lot L (20, 40 mcg) of the Smith Kline-RIT recombinant DNA yeast-derived hepatitis B vaccine and a 20-mcg dose of the Merck Sharp and Dohme plasma-derived hepatitis B vaccine was conducted in young adults under randomized, double-blind conditions. Immunization was carried out according to a 0-, 1-, and 6-month vaccination schedule. Results indicated that the yeast-derived hepatitis B vaccine was well tolerated and immunogenic. Reactogenicity to both yeast- and plasma-derived vaccines was mild in severity and low in incidence with no significant differences appearing between the study groups. One month after the third dose, the yeast-derived vaccines induced a high degree of soroconversion ranging between 95.0% and 100%. The response was not lot or dose-dependent. The administration of the plasma-derived vaccine resulted in anti-HBs geometric mean titres statistically signifirantly higher than those elicited by the different yeast-derived hepatitis B vaccines one month after the third dose of vaccine but the difference was not large enough to be of great clinical significance.

  • PDF

Development of Recombinant Human Growth Hormone in Yeast: Efficacy Evaluation and Safety Assessment (Human growth hormone의 개발과 이에 따른 효능 및 안전성 평가)

  • Lee Sangkyun;Park Soon Jae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 1997.10a
    • /
    • pp.38-42
    • /
    • 1997
  • Human growth hormone is known as one of the peptide hormones which is consisted of 191 amino acids derived from the pituitary gland in humans. The objectives of this study were to supply inexpensive recombinant methionyl human growth hormones (rHGH) synthesized by the DNA technology in a yeast cell line and followed by the establishement of protein purification techniques. The next steps of the research were to study its physic-chemical properties and biological properties, and to evaluate various preclinical aspcts including pharmacokinetics sutdy, general pharmacology study, general toxicity test, and specific toxicity tests. Clinical phase I, II, III studies were also done against growth hormone dficient children to reveal that growth promoting effects were similar compared with the natural HGH extracted from pituitary glands and commercially available rHGHs. The results could be summarized that (I) this yeast dervied rHGH have had excellent physico-chemical and biological properties in comparison with a natural HGH and other synthesized rHGHs, (2) we could not see any toxic side effects when very high doses were administered to the experimental animals, and (3) this growth hormone showed effectiveness in the growth stimulating to growth hormone deficient patients.

  • PDF

Amplification of Glutathione Production in E. coli Cells Using Recombinant DNA Techniques

  • Nam, Yong-Suk;Park, Young-In;Lee, Se-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.157-162
    • /
    • 1991
  • Conditions for glutathione production in E. coli cells which possess pGH501 (2 gshI+gshII) were studied. In terms of ATP supply for the glutathione synthesis, two different systems have been constructed and compared. When the acetate kinase reaction of E. coli was used for ATP generation, 20 mM of L-cysteine was completely converted to glutathione by toluene-treated E. coli cells (100 mg/ml) harboring pGH501 within 2 h at $37^{\circ}C$. However, considering the economical aspects, the glycolytic pathway of yeast was chosen as a better system for ATP generation. The optimal concentrations of reactants for glutathione production were determined to be as follows; 80 mM L-glutamate, 20 mM L-cysteine, 20 mM glycine, 20 mM $MgCl_2$, 50 mM potassium phosphate buffer (pH 7.5), 400 mM glucose, polyoxyethylene stearylamine ($5\;\mul/ml$), toluene-treated E. coli HB101/pGH501 (100 mg/ml), and dried yeast cells (400 mg/ml). The conversion ratio of L-cysteine to glutathione was 80% (about 5 mg/ml) under optimal condition within 6 h at $37^{\circ}C$.

  • PDF