• 제목/요약/키워드: Recombinant DNA

검색결과 842건 처리시간 0.026초

Southern Hybridization에 의한 Biphenyl 및 4-Chlorobiphenyl 분해유전자들의 상동성 분석 (Homology Analysis Among the Biphenyl and 4-Chlorobiphenyl Degrading Genes by Southern Hybridization)

  • 남정현;김치경;이재구;이길재
    • 한국미생물·생명공학회지
    • /
    • 제22권1호
    • /
    • pp.37-44
    • /
    • 1994
  • The homology among the genes coding for degradation of bipheny(BP) and 4-chlorobiphenyl(4CB) was comparatively analyzed by Southern hybridization in several BP/4CB degrading bacterial strains. As the hybridization results of their genomic DNAs with pcbABCD as the DNA probe, the group of Pseudomonas sp. DJ-12. P08 and P27 strain was separated by the group of P20 and P1242 strains. The P. pseudoalcaligenes KF707 showed the hybidization signal which was homologous to the group of DJ-12, but they had different restriction endonuclease sites. The pcbAB genes in pCUl recombinant plasmid from Pseudomonas sp. DJ-12 appeared to be homologous to pchAB genes in pKTF20 cloned from P. pseudoalcaligenes KF707, but the C genes in both strains were not homologous. The bphABC in pKTF20 showed the signals homologous to the cbp ACB in pAW6194 cloned from P. putida OU83, but homologous signal was not found botween the pcbABCD genes in pCUl and the cbpADCB genes in pAW6194 recombbinant plasmid.

  • PDF

Cloning and expression of trypsin-encoding cDNA from Blattella germanica and its possibility as an allergen

  • OCK Mee Sun;KIM Bong Jin;KIM Sun Mi;BYUN Kang Hyun
    • Parasites, Hosts and Diseases
    • /
    • 제43권3호
    • /
    • pp.101-110
    • /
    • 2005
  • In this study, the trypsin gene (bgtryp-1) from the German cockroach, Blattella germanica, was cloned via the immunoscreening of patients with allergies to cockroaches. Nucleotide sequence analysis predicted an 863 bp open reading frame which encodes for 257 amino acids. The deduced amino acid sequence exhibited $42-57\%$ homology with the serine protease from dust mites, and consisted of a conserved catalytic domain (GOSGGPLV). bgtryp-1 was determined by both Northern and Southern analysis to be a 0.9 kb, single-copy gene. SDS-PAGE and Western blotting analyses of the recombinant protein (Bgtryp-1) over-expressed in Escherichia coli revealed that the molecular mass of the expressed protein was 35 kDa, and the expressed protein was capable of reacting with the sera of cock-roach allergy patients. We also discussed the possibility that trypsin excreted by the digestive system of the German cockroach not only functions as an allergen, but also may perform a vital role in the activation of PAR-2.

Expression of Recombinant Human Cytochrome P450 1A2 in Escherichia coli Bacterial Mutagenicity Tester Strain

  • Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.305-309
    • /
    • 1998
  • Human cytochrome P450 1A2 is one of the major cytochrome P450s in human liver. It is known to be capable of activating a number of carcinogens such as arylamines and heterocyclic amines. In order to develop the new bacterial mutagenicity test system with human P450, a full length of human P450 1A2 cDNA inserted into pCW bacterial expression vector was introduced to Escherichia coli WP2 uvrA strain which is a well-known E. coli strain for bacterial reverse mutagenicity assay. Expressed human P450 1A2 showed typical P450 hemoprotein spectra. Maximum expression was achieved at 48 hrs after incubating at $30^{\circ}C$ in terrific broth containing ampicillin, IPTG and other supplements. High level expression of P450 1A2 in E. coli WP2 uvrA membranes was determined in SDS-PAGE. The well-known mutagens 2-aminoanthracene and MElQ increased the revertant colonies of E. coli WP2 uvrA expressing human P450 1A2 without an exogenous rat hepatic post-mitochondrial supernatant (S9 fraction) in a dose-dependent manner. The results show that the functional expression of human P450 in bacterial mutagenicity tester strain will provide a useful tool for studying the mechanism of the mutagenesis and carcinogenesis of new drugs and environmental chemicals.

  • PDF

당첨가가 B형 간염 바이러스 백신의 안정성에 미치는 영향 (Effects of Addition of Sugars on the Stability of Hepatitis B Virus Vaccine)

  • 성인화
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.143-149
    • /
    • 1997
  • Most of the current licenced hepatitis B vaccines are being produced by recombinant DNA technology in large fermentation cultures of Saccharomyces cerevisiae of yeast cells which carry the gene coded for hepatitis B virus surface antigen. These vaccines are proved very effective clinically and the immunogenicity of vaccines could be maintained for a long time under refrigeration. To develope the stabilizer that could increase the stability of hepatitis B virus vaccine which could be stored for a long period at room temperature or higher conditions, glucose, lactose and sucrose solutions in phosphate buffered saline were added into hepatitis B vaccine respectively to make 2.5%, 5%, 7.5% and 10% final concentration in vaccines. These sugar-vaccine mixtures were stored at room temperature for one month, two months and three months respectively and then inoculated into ICR mice intramuscularly. On the fourteenth day after inoculation, mice were bled and sera were tested for the evaluation of efficacies of vaccines. The results showed that 5% glucose, 7.5% lactose and sucrose increased the stability of vaccines in some degree and this method could be applied for the production of other viral vaccines and bacterial vaccines.

  • PDF

Assay of the Bombyx mori Recombinant Protein Disulfide Isomerase (bPDI) Acivity

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Park, Soo-Jung;Kwon, O-Yu
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.45-45
    • /
    • 2003
  • Protein disulfide isomerase (PDO) is an essential protein which is localized to the endoplasmic reticulum (ER) of eukaryotic cells. It catalyses the formation and isomerization of disulfide bonds during the folding of secretory proteins. We have isolarted a cDNA encoding PDI from Bombyx mori (bPDI), in which an open reading frame of 494 mino acid (55.6kDa) is shown. (omitted)

  • PDF

Exploiting Gastrointestinal Microbes for Livestock and Industrial Development - Review -

  • Singh, Birbal;Bhat, Tej K.;Singh, Bhupinder
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권4호
    • /
    • pp.567-586
    • /
    • 2001
  • Gastrointestinal tract of ruminants as well as monogastric animals are colonised by a variety of microorganisms including bacteria, fungi and protozoa. Gastrointestinal ecosystem, especially the rumen is emerging as an important source for enrichment and natural selection of microbes adapted to specific conditions. It represents a virtually untapped source of novel products (e.g. enzymes, antibiotics, bacteriocins, detoxificants and aromatic compounds) for industrial and therapeutic applications. Several gastrointestinal bacteria and fungi implicated in detoxification of anti-nutritional factors (ANFs) can be modified and manipulated into promising system for detoxifying feed stuffs and enhancing fibre fermentation both naturally by adaptation or through genetic engineering techniques. Intestinal lactobacilli, bifidobacteria and butyrivibrios are being thoroughly investigated and widely recommended as probiotics. Restriction endonucleases and native plasmids, as stable vectors and efficient DNA delivery systems of ruminal and intestinal bacteria, are increasingly recognised as promising tools for genetic manipulation and development of industrially useful recombinant microbes. Enzymes can improve the nutrient availability from feed stuffs, lower feed costs and reduce release of wastes into the environment. Characterization of genes encoding a variety of commercially important enzymes such as cellulases, xylanases, $\beta$-glucanases, pectinases, amylases and phytases will foster the development of more efficacious and viable enzyme supplements and enzyme expression systems for enhancing livestock production.

Cloning and Characterization of the Mycobacterium bovis BCG panB Gene Encoding Ketopantoate Hydroxymethyltransferase

  • Kim, Jin-Koo;Kim, Kwang-Dong;Lim, Jong-Seok;Lee, Hee-Gu;Kim, Sang-Jae;Cho, Sang-Hyun;Jeong, Won-Hwa;Choe, In-Seong;Chung, Thi-Wha;Paik, Sang-Gi;Choe, Yong-Kyung
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.342-346
    • /
    • 2001
  • The Mycobacterium bovis BCG panB gene, encoding ketopantoate hydroxymethyltransferase (KPHMT), was cloned from a ${\lambda}gt11$ genomic library and sequenced. The DNA sequence encodes a protein that contains 281 amino acid residues (M, 29,337) with a high similarity to the KPHMTs. Subcloning of a 846 by open reading frame (ORF), but not a 735 by ORF, into the vector pUC19 led to complementation of the panB mutant of Escherichia coli. The BCG pang gene was overexpressed in E. coli and the KPHMT purified to homogeneity The recombinant protein was further confirmed by an enzymatic assay.

  • PDF

Overexpression and characterization of thermostable chitinase from Bacillus atrophaeus SC081 in Escherichia coli

  • Cho, Eun-Kyung;Choi, In-Soon;Choi, Young-Ju
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.193-198
    • /
    • 2011
  • The chitinase-producing strain SC081 was isolated from Korean traditional soy sauce and identified as Bacillus atrophaeus based on a phylogenetic analysis of the 16S rDNA sequence and a phenotypic analysis. A gene encoding chitinase from B. atrophaeus SC081 was cloned in Escherichia coli and was named SCChi-1 (GQ360078). The SCChi-1 nucleotide sequences were composed of 1788 base pairs and 596 amino acids, which were 92.6, 89.6, 89.3, and 78.9% identical to those of Bacillus subtilis (ABG57262), Bacillus pumilus (ABI15082), Bacillus amyloliquefaciens (ABO15008), and Bacillus licheniformis (ACF40833), respectively. A recombinant SCChi-1 containing a hexahistidine tag at the amino-terminus was constructed, overexpressed, and purified in E. coli to characterize SCChi-1. $H_6SCChi$-1 revealed a hydrolytic band on zymograms containing 0.1% glycol chitin and showed the highest lytic activity on colloidal chitin and acidic chitosan. The optimal temperature and pH for chitinolytic activity were $50^{\circ}C$ and pH 8.0, respectively.

Bcl-2 Overexpression Inhibits Generation of Intracellular Reactive Oxygen Species and Blocks Adriamycin-induced Apoptosis in Bladder Cancer Cells

  • Kong, Chui-Ze;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.895-901
    • /
    • 2013
  • Resistance to induction of apoptosis is a major obstacle for bladder cancer treatment. Bcl-2 is thought to be involved in anti-apoptotic signaling. In this study, we investigated the effect of Bcl-2 overexpression on apoptotic resistance and intracellular reactive oxygen species (ROS) generation in bladder cancer cells. A stable Bcl-2 overexpression cell line, BIU87-Bcl-2, was constructed from human bladder cancer cell line BIU87 by transfecting recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. The sensitivity of transfected cells to adriamycin (ADR) was assessed by MTT assay. Apoptosis was examined by flow cytometry and acridine orange fluorescence staining. Intracellular ROS was determined using flow cytometry, and the activities of superoxide dismutase (SOD) and catalase (CAT) were also investigated by the xanthinoxidase and visible radiation methods using SOD and CAT detection kits. The susceptibility of BIU87-Bcl-2 cells to ADR treatment was significantly decreased as compared with control BIU87 cells. Enhanced expression of Bcl-2 inhibited intracellular ROS generation following ADR treatment. Moreover, the suppression of SOD and CAT activity induced by ADR treatment was blocked in the BIU87-Bcl-2 case but not in their parental cells. The overexpression of Bcl-2 renders human bladder cancer cells resistant to ADR-induced apoptosis and ROS might act as an important secondary messenger in this process.

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.