• Title/Summary/Keyword: Recombinant DNA

Search Result 842, Processing Time 0.034 seconds

Rat Malonyl-CoA Decarboxylase; Cloning, Expression in E. coli and its Biochemical Characterization

  • Lee, Gha-Young;Bahk, Young-Yil;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • Malonyl-CoA decarboxylase (E.C.4.1.1.9) catalyzes the conversion of malonyl-CoA to acetyl-CoA. Although the metabolic role of this enzyme has not been fully defined, it has been reported that its deficiency is associated with mild mental retardation, seizures, hypotonia, cadiomyopathy, developmental delay, vomiting, hypoglycemia, metabolic acidosis, and malonic aciduria. Here, we isolated a cDNA clone for malonyl CoA decarboxylase from a rat brain cDNA library, expressed it in E. coli, and characterized its biochemical properties. The full-length cDNA contained a single open-reading frame that encoded 491 amino acid residues with a calculated molecular weight of 54, 762 Da. Its deduced amino acid sequence revealed a 65.6% identity to that from the goose uropigial gland. The sequence of the first 38 amino acids represents a putative mitochondrial targeting sequence, and the last 3 amino acid sequences (SKL) represent peroxisomal targeting ones. The expression of malonyl CoA decarboxylase was observed over a wide range of tissues as a single transcript of 2.0 kb in size. The recombinant protein that was expressed in E. coli was used to characterize the biochemical properties, which showed a typical Michaelis-Menten substrate saturation pattern. The $K_m$ and $V_{max}$ were calculated to be $68\;{\mu}M$ and $42.6\;{\mu}mol/min/mg$, respectively.

Molecular Cloning of $\beta$-Galactosidase Gene from Neisseria lactamica 2118 into Escherichia coli MC 1061 (Neisseria lactamica 2118의 $\beta$-galactosidase 유전자의 대장균으로의 클로닝)

  • Lee, Jong-Su
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 1992
  • The gene coding for $\beta$-galactosidase of Neisseria lactamica 2118 was cloned into Escherichia coli MC 1061. The isolated 6.5 Kb EcoR I fragement and 7.2 Kb BamH I fragment of chromosomal DNA in Southern hybridization were ligated to a vector plasmid pBR322 and then transformed into Escherichia coli MC 1061 cells. Finally, I obtained three clones as $\beta$-galactosidase positive clone by colony hybridization and Southern hybridization($\beta$-galactosidase probe: lac Z gene of pMC1871). Three recombinant plasmids(pNL.13. 17 and 24) were found to contain the 7.2Kb BamH I fragment originated from Neisseria lactamica 2118 chromosomal DNA by Southern hybridization and pNL 24 was showed high homology to probe especially and also its physical map was constructed.

  • PDF

Molecular Characterization of the Soybean L-Asparaginase Gene Induced by Low Temperature Stress

  • Cho, Chang-Woo;Lee, Hye-Jeong;Chung, Eunsook;Kim, Kyoung Mi;Heo, Jee Eun;Kim, Jung-In;Chung, Jongil;Ma, Youzhi;Fukui, Kiichi;Lee, Dae-Won;Kim, Doh-Hoon;Chung, Young-Soo;Lee, Jai-Heon
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.280-286
    • /
    • 2007
  • L-asparaginase (EC 3.5.1.1) catalyzes the hydrolysis of the amide group of L-asparagine, releasing aspartate and $NH_4{^+}$. We isolated a low temperature-inducible cDNA sequence encoding L-asparaginase from soybean leaves. The full-length L-asparaginase cDNA, designated GmASP1, contains an open reading frame of 1,258 bp coding for a protein of 326 amino acids. Genomic DNA blotting and fluorescence in situ hybridization showed that the soybean genome has two copies of GmASP1. GmASP1 mRNA was induced by low temperature, ABA and NaCl, but not by heat shock or drought stress. E. coli cells expressing recombinant GmASP1 had 3-fold increased L-asparaginase activity. A possible function of L-asparaginase in the early response to low temperature stress is discussed.

Progress and Prospect of Rice Biotechnology in Korea

  • Tae Young, Chung
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.23-49
    • /
    • 1997
  • This is a progress report of rice biotechnology including development of gene transformation system, gene cloning and molecular mapping in rice. The scope of the research was focused on the connection between conventional breeding and biotech-researches. Plant transformation via Agrobacterium or particle bombardment was developed to introduce one or several genes to recommended rice cultivars. Two chimeric genes containing a maize ribosome inactivating protein gene (RIP) and a gerbicide resistant gene (bar) were introduced to Nipponbare, a Japonica cultivar, and transmitted to Korean cultivars. The homozygous progenies of herbicide resistant transgenic plant showed good fertility and agronomic characters. To explore the genetic resourses in rice, over 8,000 cDNA clones from immature rice seed have been isolated and sequenced. About 13% of clones were identified as enzymes related to metabolic pathway. Among them, twenty clones have high homology with genes encoding enzymes in the photorespiratory carbon cycle reaction. Up to now about 100 clones were fully sequenced and registered at EMBL and GenBank. For the mapping of quantitative tarits loci (QTL) and eternal recombinant inbred population with 164 F13 lines (MGRI) was developed from a cross between Milyang 23 and Gihobyeo, Korean rice cultivars. After construction of fully saturated RFLP and AFLP map, quantitative traits using MGRI population were analyzed and integrated into the molecular map. Eighty seven loci were determined with 27 QTL characters including yield and yield components on rice chromosomes. Map based cloning was also tried to isolate semi-dwarf (sd-1) gene in rice. A DNA probe, RG 109, the most tightly linked to sd-1 gene was used to screen from bacterial artifical chromosome (BAC) libraries and five over lapping clones presumably containing sd-1 gene were isolated. Rice genetic database including results of biotech reasearch and classical genetics is provided at Korea Rice Genome Server which is accessible with world wide web (www) browser. The server provides rice cDNA sequences and map informations linked with phenotypic images.

Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast (Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석)

  • Da-In Kang;Yeon-Hee Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.436-440
    • /
    • 2022
  • In this study, yeast artificial chromosome Insert (YAC) harboring genes which related xylan metabolism was constructed by using chromosome manipulation technique. For efficient chromosome manipulation, each splitting fragment (DNA module) required for splitting process was prepared and these DNA modules were transformed into Saccharomyces cerevisiae strain YKY164. By two-rounds chromosome splitting, yeast chromosome VII (1,124 kb) was split 887 kb-YAC, 45 kb-mini YAC and 198 kb-YAC and YKY183 strain containing 18 chromosomes was constructed. Splitting efficiency for chromosome manipulation was 50- 78% and expression level of foreign genes on 45 kb-mini YAC and enzyme activity were indistinguishable from that of the YKY164 strain. Furthermore, xylan-degraded products by recombinant enzymes were confirmed and mini-yeast artificial chromosome maintained stable mitotic stability without chromosome loss during 160 generations.

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Cloning and Expression of the Cathepsin F-like Cysteine Protease Gene in Escherichia coli and Its Characterization

  • Joo, Han-Seung;Koo, Kwang-Bon;Park, Kyun-In;Bae, Song-Hwan;Yun, Jong-Won;Chang, Chung-Soon;Choi, Jang-Won
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.158-167
    • /
    • 2007
  • In this study, we have cloned a novel cDNA encoding for a papain-family cysteine protease from the Uni-ZAP XR cDNA library of the polychaete, Periserrula leucophryna. This gene was expressed in Escherichia coli using the T7 promoter system, and the protease was characterized after partial purification. First, the partial DNA fragment (498 bp) was amplified from the total RNA via RT-PCR using degenerated primers derived from the conserved region of cysteine protease. The full-length cDNA of cysteine protease (PLCP) was prepared via the screening of the Uni-ZAP XR cDNA library using the $^{32}P-labeled$ partial DNA fragment. As a result, the PLCP gene was determined to consist of a 2591 bp nucleotide sequence (CDS: 173-1024 bp) which encodes for a 283-amino acid polypeptide, which is itself composed of an 59-residue signal sequence, a 6-residue propeptide, a 218-residue mature protein, and a long 3'-noncoding region encompassing 1564 bp. The predicted molecular weights of the preproprotein and the mature protein were calculated as 31.8 kDa and 25 kDa, respectively. The results of sequence analysis and alignment revealed a significant degree of sequence similarity with other eukaryotic cysteine proteases, including the conserved catalytic triad of the $Cys^{90},\;His^{226},\;and\;Asn^{250}$ residues which characterize the C1 family of papain-like cysteine protease. The nucleotide and amino acid sequences of the novel gene were deposited into the GenBank database under the accession numbers, AY390282 and AAR27011, respectively. The results of Northern blot analysis revealed the 2.5 kb size of the transcript and ubiquitous expression throughout the entirety of the body, head, gut, and skin, which suggested that the PLCP may be grouped within the cathepsin F-like proteases. The region encoding for the mature form of the protease was then subcloned into the pT7-7 expression vector following PCR amplification using the designed primers, including the initiation and termination codons. The recombinant cysteine proteases were generated in a range of 6.3 % to 12.5 % of the total cell proteins in the E. coli BL21(DE3) strain for 8 transformants. The results of SDS-PAGE and Western blot analysis indicated that a cysteine protease of approximately 25 kDa (mature form) was generated. The optimal pH and temperature of the enzyme were determined to be approximately 9.5 and $35^{\circ}C$, respectively, thereby indicating that the cysteine protease is a member of the alkaline protease group. The evaluation of substrate specificity indicated that the purified protease was more active towards Arg-X or Lys-X and did not efficiently cleave the substrates with non-polar amino acids at the P1 site. The PLCP evidenced fibrinolytic activity on the plasminogen-free fibrin plate test.

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

Detection of Recombinant Marker DNA in Genetically Modified Glyphosate- Tolerant Soybean and Use in Environmental Risk Assessment

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.390-394
    • /
    • 2004
  • The genetically modified glyphosate-tolerant soybean contains the following introduced DNA sequences: the EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene from Agrobacterium sp. strain CP4, the 35S promoter from the cauliflower mosaic virus, and the NOS terminator from Agrobacterium tumefaciens. In the present study, detection of these introduced DNAs was performed by amplification using the polymerase chain reaction (PCR). A multiplex PCR method was also applied to prevent false positive results. When primers for 35S promoter, nos3', CTP(chloroplast transit peptide), and CP4 EPSPS (EPSPS from Agrobacterium sp. CP4) were used, positive results were obtained in PCR reactions using DNA from genetically modified glyphosate-tolerant soybeans. There were no false positive results when using DNA from non-genetically modified soybeans. The CP4 EPSPS gene was detected when less than 125 pg glyphosate-tolerant soybean DNA was amplified. Lectin Lel and psb A were amplified from both non-genetically modified and genetically modified glyphosate-tolerant soybean DNA. Multiplex PCR was performed using different primer sets for actin Sacl, 35S promoter and CP4 EPSPS. The actin gene was detectable in both non-genetically modified and glyphosate-tolerant soybeans as a constant endogenous gene. Target DNAs for the 35S promoter, and CP4 EPSPS were detected in samples containing 0.01-0.1% glyphosate-tolerant soybean, although there were variations depending on primers by multiplex PCR. Soybean seeds from five plants of non-genetically modified soybean were co-cultivated for six months with those of genetically modified soybean, and they were analyzed by PCR. As a result, they were not positive for 35S promoter, nos3' or CP4 EPSPS. Therefore, these results suggest there was no natural crossing of genes between glyphosate-tolerant and non-genetically modified soybean during co-cultivation, which indicates that gene transfer between these plants is unlikely to occur in nature.

Production of Transgenic Orchardgrass Overexpressing a Thermotolerant Gene, DgP23 (내열성 유전자 DgP23을 도입한 형질전환 오차드그라스의 생산)

  • Kim Ki-Yong;Jang Yo-Soon;Park Geun Je;Choi Gi Jun;Seong Byung Ryul;Seo Sung;Cha Joon-Yung;Son Daeyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.267-274
    • /
    • 2005
  • To develop transgenic orchardgrass (Dactylis glomerata L.) resistant to high temperature, a thermptolerance gene, DgP23, was introduced into orchardgrass using Agrobacterium - mediated transformation method. PCR and Southern blot analyses using genomic DNA showed specific DNA band on agarose gel and hybridization signal on X- ray film in transgenic orchardgrass harboring the recombinant DgP23 gene, but not in the wild type and empty vector control plants. RT-PCR and Southern blot analyses using total RNA also showed specific DNA band and hybridization signal. Transgenic orchardgrass did not showed ny morphological aberration both in the green house and field cultivation. Thermotolerance of transgenic plants was not detected in laboratory test. but may detected in field test.