• Title/Summary/Keyword: Recognition Improve

Search Result 2,186, Processing Time 0.03 seconds

Near-infrared face recognition by fusion of E-GV-LBP and FKNN

  • Li, Weisheng;Wang, Lidou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.208-223
    • /
    • 2015
  • To solve the problem of face recognition with complex changes and further improve the efficiency, a new near-infrared face recognition algorithm which fuses E-GV-LBP and FKNN algorithm is proposed. Firstly, it transforms near infrared face image by Gabor wavelet. Then, it extracts LBP coding feature that contains space, scale and direction information. Finally, this paper introduces an improved FKNN algorithm which is based on spatial domain. The proposed approach has brought face recognition more quickly and accurately. The experiment results show that the new algorithm has improved the recognition accuracy and computing time under the near-infrared light and other complex changes. In addition, this method can be used for face recognition under visible light as well.

A Study on the Implementation of Connected-Digit Recognition System and Changes of its Performance (연결 숫자음 인식 시스템의 구현과 성능 변화)

  • Yun Young-Sun;Park Yoon-Sang;Chae Yi-Geun
    • MALSORI
    • /
    • no.45
    • /
    • pp.47-61
    • /
    • 2003
  • In this paper, we consider the implementation of connected digit recognition system and the several approaches to improve its performance. To implement efficiently the fixed or variable length digit recognition system, finite state network (FSN) is required. We merge the word network algorithm that implements the FSN with one pass dynamic programming search algorithm that is used for general speech recognition system for fast search. To find the efficient modeling of digit recognition system, we perform some experiments along the various conditions to affect the performance and summarize the results.

  • PDF

Voice Recognition Elevator for Handicapped People (장애인을 위한 음성인식 엘리베이터)

  • Oh, Yong-Jae;Kim, Jeong-Rae;Chung, Ik-Joo
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.55-60
    • /
    • 2013
  • In this paper, we proposed an efficient method for implementing a voice recognition elevator. Unlike the existing ones, the proposed system is based on the bluetooth communication and smartphones equipped with the google speech recognition software, which makes it possible that the speech recognition capability can be added to the previously installed elevators. In order to improve the recognition accuracy, instead of using the result of the google recognizer, we built a web server where the user data are accumulated and they are used for recognition error correction.

  • PDF

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

Various Approaches to Improve Exclusion Performance of Non-similar Candidates from N-best Recognition Results on Isolated Word Recognition (고립 단어 인식 결과의 비유사 후보 단어 제외 성능을 개선하기 위한 다양한 접근 방법 연구)

  • Yun, Young-Sun
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.153-161
    • /
    • 2010
  • Many isolated word recognition systems may generate non-similar words for recognition candidates because they use only acoustic information. The previous study [1,2] investigated several techniques which can exclude non-similar words from N-best candidate words by applying Levenstein distance measure. This paper discusses the various improving techniques of removing non-similar recognition results. The mentioned methods include comparison penalties or weights, phone accuracy based on confusion information, weights candidates by ranking order and partial comparisons. Through experimental results, it is found that some proposed method keeps more accurate recognition results than the previous method's results.

  • PDF

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Intelligent Activity Recognition based on Improved Convolutional Neural Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.807-818
    • /
    • 2022
  • In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.

Action Recognition Method in Sports Video Shear Based on Fish Swarm Algorithm

  • Jie Sun;Lin Lu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.554-562
    • /
    • 2023
  • This research offers a sports video action recognition approach based on the fish swarm algorithm in light of the low accuracy of existing sports video action recognition methods. A modified fish swarm algorithm is proposed to construct invariant features and decrease the dimension of features. Based on this algorithm, local features and global features can be classified. The experimental findings on the typical sports action data set demonstrate that the key details of sports action can be successfully retained by the dimensionality-reduced fusion invariant characteristics. According to this research, the average recognition time of the proposed method for walking, running, squatting, sitting, and bending is less than 326 seconds, and the average recognition rate is higher than 94%. This proves that this method can significantly improve the performance and efficiency of online sports video motion recognition.

Design and Implementation of a Bimodal User Recognition System using Face and Audio (얼굴과 음성 정보를 이용한 바이모달 사용자 인식 시스템 설계 및 구현)

  • Kim Myung-Hun;Lee Chi-Geun;So In-Mi;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.353-362
    • /
    • 2005
  • Recently, study of Bimodal recognition has become very active. In this paper we propose a Bimodal user recognition system that uses face information and audio information. Face recognition consists of face detection step and face recognition step. Face detection uses AdaBoost to find face candidate area. After finding face candidates, PCA feature extraction is applied to decrease the dimension of feature vector. And then, SVM classifiers are used to detect and recognize face. Audio recognition uses MFCC for audio feature extraction and HMM is used for audio recognition. Experimental results show that the Bimodal recognition can improve the user recognition rate much more than audio only recognition, especially in the Presence of noise.

  • PDF

A Study on Vehicle Number Recognition Technology in the Side Using Slope Correction Algorithm (기울기 보정 알고리즘을 이용한 측면에서의 차량 번호 인식 기술 연구)

  • Lee, Jaebeom;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.465-468
    • /
    • 2022
  • The incidence of traffic accidents is increasing every year, and Korea is among the top OECD countries. In order to improve this, various road traffic laws are being implemented, and various traffic control methods using equipment such as unmanned speed cameras and traffic control cameras are being applied. However, as drivers avoid crackdowns by detecting the location of traffic control cameras in advance through navigation, a mobile crackdown system that can be cracked down is needed, and research is needed to increase the recognition rate of vehicle license plates on the side of the road for accurate crackdown. This paper proposes a method to improve the vehicle number recognition rate on the road side by applying a gradient correction algorithm using image processing. In addition, custom data learning was conducted using a CNN-based YOLO algorithm to improve character recognition accuracy. It is expected that the algorithm can be used for mobile traffic control cameras without restrictions on the installation location.

  • PDF