• Title/Summary/Keyword: Reclaimed saline land

Search Result 77, Processing Time 0.032 seconds

Biological Improvement of Reclaimed Tidal Land Soil(IV) Changes of Saline Soil by addition of Organic Acids (해안간척지 토양의 생물학적 토성개선에 관한 연구 (제4보) 유기산첨가에 따르는 토양성분의 제 변화에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 1969
  • In the previous paper(part III), a certian relationships between the changes of chlorinity and organic acid released from organic material were seemed to be concened to each other in saline soil suspension. Such a possibility had been a cause to take this experiments and this experiment was carried out under the treatment of organic acid crystal, oxalic acid and succinic acid, to the soil suspension(soil: water=20g:40cc) directly. The amount of organic acid treated to the suspension were related to the contents of organic material, as amount of organic acid per gram of organic material(391.76mg). The saline soil suspension were grouped and treated with the acids in order of 78.35mg(Group 1), 391.76mg(Group 2) 979.4mg(Group 3), and 1958.8mg(Group 4), respectively. Treated suspension had been incubated at room temperature and extract from suspension was used for analysis. Followings are summary of this report. 1) Changes of pH in soil suspension appeared a little increase after the treatment of organic acid until 168 hours. 2) Total acidity of soil suspension showed a variation, however, the values of total acidity appeared not to be increased or decreased during the period of experiment. 3) Sugar contents of soil suspension was increased until 168 hours after treatment. These results are similar tendency to the previous paper. 4) Addition of organic acid to soil suspension was confirmed not to be effective method for desalination from saline soil. Chlorinity of group 3 and 4 which were treated with high concentration of organic acid showed a decrease comparing to control group.

  • PDF

Investigation of Soil Physico-chemical Properties in Saemangeum Reclaimed Tidal Land in Korea

  • Ahn, Byung-Koo;Lim, Yeon-Yi;Ko, Do-Young;Lee, Chang-Kyu;Kim, Jin-Ho;Song, Young-Ju;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • This study was conducted to investigate the physical and chemical properties of soils in Saemangeum reclaimed lands. The investigated areas were total 5,020 ha which included 220 ha for Agricultural Life site, 2,450 ha for Tourism & Leisure site, 1,130 ha for Industrial & Research site, 820 ha for Bioenergy crop production site, and 400 ha for Rural City site. Soil samples consisting of the upper 20 cm from the surface were collected in every $200m{\times}500m$ of the each site in March and September, 2015. Particle size distribution of soils in the reclaimed land was 83.2% sand, 8.6% silt and 8.2% clay in average. Soil texture was distributed as 40.8% sandy soil, 35.5% loamy sand, and 19.7% sandy loam. Based on the investigation of soil chemical properties conducted in March, 2015, soil pH, electrical conductivity of a saturated soil paste extract (ECe), and exchangeable (Exch.) $K^+$ and $Mg^{2+}$ concentrations were higher than those of the optimum levels for upland soil, whereas soil organic matter content, available (Avail.) phosphate concentration, and Exch. $Ca^{2+}$ concentration were lower than those of the optimum ranges. Depending on the results of the soil chemical properties measured in September, 2015, soil pH, ECe, and Exch. $K^+$ concentration were higher than those of the optimum levels, but soil organic matter, Avail. phosphate, and Exch. $Ca^{2+}$ concentration were lower than the optimum ranges. In addition, distribution of sodic soil ranged between 41.4% and 50.0%, and saline soils were from 16.4 to 31.8%. Soils with pH values above 7.0 increased from 15.3% in March to 35.2% in September. Soils with ECe values over $4.8dS\;m^{-1}$ increased from 45.6% to 50.7%, whereas soils with the values below $2.0dS\;m^{-1}$ decreased from 42.8% to 36.9%.

Effects of Capillary Water Interruption Layer on the Growth of Zoysiagrasses and Cool-season Turfgrasses in Reclaimed Land (염해지에서 모세관수 차단층 설치 유무에 따른 한국잔디 및 한지형 잔디류의 생육)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This study was carried out to examine the growth performance of 4 species of cool-season grasses and 4 species of zoysiagrasses under salt injury in Seo-san reclaimed area. Grasses were grown on the plots with capillary water interruption layer (WCWIL) and without capillary water interruption layer (WOCWIL) soil systems. Cool-season grass and seeding-type zoysiagrass plots were seeded on 6 Jun, 2006. Vegetative zoysiagrass 'Junggi' was established by sprigging and 'Senock' and 'Millock' were plugged. Electric conductivities of irrigation water (ECw) ranged from 0.28 to $3.3\;dS{\cdot}m^{-1}$. Electric conductivities (ECe) of the soil with capillary water interruption layer and without capillary water interruption layer ranged from 0.55 to $9.4\;dS{\cdot}m^{-1}$ and from 1.84 to $9.4\;dS{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rates, and growth rates were rated visually for 2 years. Zoysiagrass 'Junggi', creeping bentgrass, zoysiagrass 'Senock' and 'Millock' showed acceptable growth at salty fairway condition, while Kentucky bluegrass, perennial ryegrass, Kentucky bluegrass mixed with perennial ryegrass, and seeded zoysiagrass 'Zenith' showed establishment rates below 70%. These results will be useful when choosing turf grass species and cultivars for the golf courses in reclaimed land area.

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum (새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링)

  • Lee, Seong-Won;Kang, Bang-Hun;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.114-124
    • /
    • 2022
  • The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

Report on Study for Soil Salinity, Plantation and Yields in the Existing Polders (개성간척농지의 토양감도, 재식실적 및 수호량에 대한 실태조사)

  • 박갑성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.3
    • /
    • pp.1731-1738
    • /
    • 1969
  • 1. For the purpose of analyzing the plan of new reclamation project and its evaluation, actual studies for the existing polders are required. 2. The variations of the salt content of soil, yields and staus of its plantation have been studied for six areas reclaimed in relatively recent years, including Kangwha, Daechon, Chopo, Eushin, Kwangyang and Chinkyo. 3. The annual yields from the project were only 52 percent in the first year as compared with kilograms per 10 a. in the Hachirogata polder in Japan. 4. Such a low productivity in the existing polders in Korea is chiefly by the high ground water table, unfavourable conditions of subdrainage in the root zone, and saline damages of existing high salt content. That is because the depth of drainage ditches is too shallow and layout distance between every drainage ditches is also too long. 5. In order to overcom such a uncertiainties, the drainagedistance suitable for these areas has been Calculated by using the Donnans formula. Applying to the formula, drainage facilities are so densie that land use capability may be decreased. 6. For the purpose of ensuring the effective desalinization and high land use capability, feasible interval to establish the culvert has been studied in accordance with both formulas of Donnan and Hoogan. 7. In order to accomplish the early desalinization in both areas of new reclamation or existing polders, the problems of internal drainages should be resolved. for this puprose in addition to the endeavour of the personnels actually engaged in such works. The actual support of the related agencies for financial assitance is required.

  • PDF

Effects of Nitrogen Fertilization Increment on Forage Crops Cultivation in Saemangum Reclaimed Land (새만금간척지 사료작물 재배시 질소증비 효과)

  • Yang, Chang-Hyu;Kim, Sun;Lee, Jang-Hee;Baek, Nam-Hyun;Kim, Taek-Kyum;Choi, Weon-Young;Jeong, Jae-Hyuk;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.235-240
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were two treatments of nitrogen fertilization 20% increment based on the standard fertilization of 150, $200kg\;ha^{-1}$. Whole crop barley as the winter crop sowed on 27 October. After the whole crop barley was harvested at the end of May. Corn and sorghum${\times}$sudangrass as the summer crop sowed at the early of June successively on the same field. Emergence rate the whole crop barley was high while the summer crops were low. Soil salinity was increased during cultivation of summer crops. However, corn and sorghum${\times}$sudangrass were not damaged by salt. Increase of nitrogen fertilization made the growth of cultivation crops good, stem and leaf tended to have a lot of the mineral nutrients at heading stage and silking stage. After experiment, among soil chemical properties pH, content of exchangeable sodium were decreased and content of organic matter, available phosphate were increased. Dry matter yield were showed whole crop barley $13,170kg\;ha^{-1}$ and sorghum${\times}$sudangrass $19,440kg\;ha^{-1}$ by increment of nitrogen fertilization. Therefore, to improve the product and nutrient balance of reclaimed saline land comprehensive soil management should be considered.

A Study on the Characteristics of Fluvio Marine Soils developed in the West South Coastal area (서남해안(西南海岸) 간석지토양(干潟地土壤)의 특성(特性)에 관(關)한 조사연구(調査硏究))

  • Shim, Jae-Hwan;Jung, Jung-Hwa;An, Yeul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.280-284
    • /
    • 1989
  • The soil texture and the physico-chemical characteristics of 442,000ha reclaimable tide land in the south-western of korean peninsular were analysed. The subsidence which may occur as the soil ripened was studied. The results were as follows : 1. Among the 257,000ha of existing reclaimed tidal land 53.0% was tine silty soil and 36.0% coarse silty, 6.0% coarse loamy and 5.0% sandy soils, respectively. 2. Out of the total 442,000ha of reclaimable tidal land, 51.0% was coarse silty soil, and 20% sandy, 15.0% coarse loamy and 14.0% fine silty textural family, respectively. The coarse silty deposits were mainly distributed in the Gyeong gi and Jeonnam coast, while the coarse deposits(Coarse Loamy-sandy) exist in the Jeonbuk coastal area, but in the Chungnam areas there were various textural grades. 3. Reclaimable tidal Land in the south-western part of the peninsular was Classified into saline and alkaline soil. Electric Conductivity in saturation extract was extremely high that was 46~51 mmhos/cm, E.S.P was more than 25% and pH was ranged around 7.5~8.0 4. Reclaimed to cultivated field the subsidence reclaimable tide land to be expected when was about 18% in Soil and 21% in Sicl soils calculated down to 1.25m of the profile.

  • PDF

Yield Response of Chinese Cabbage to Compost, Gypsum, and Phosphate Treatments under the Saline-sodic Soil Conditions of Reclaimed Tidal Land (퇴비, 석고, 인산으로 개량한 염류-나트륨성 간척지 토양에서 배추의 생육)

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Ro, Hee-Myong;Yun, Seok-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.587-595
    • /
    • 2016
  • Salt stress in crops in reclaimed tidal lands can be reduced by applying soil amendments. To evaluate the effects of compost, gypsum, and phosphate on the growth of Chinese cabbage in saline-sodic soil conditions, we conducted a pot experiment in 2013 and 2014. The treatments consisted of a standard fertilizer application of a mix of compost and N-P-K fertilizer (S) and standard fertilizer applications with additional compost (S + C), gypsum (S + G), phosphate (S+P), and gypsum and phosphate (S + GP). The mean dry matter yield of cabbage in 2014 was three times as great as that in 2013, although soil EC (Electrical conductivity) in 2014 was not decreased. However, the mean ratio of sodium ion in soil solution ($SAR_{1:5}$) significantly decreased from $17.3{\pm}1.1$ in 2013 to $11.2{\pm}2.7$ in 2014. Application of gypsum had the greatest positive impact on the growth of Chinese cabbage. The S + G treatment increased dry matter yield by 7.0 (48.2) and 7.9 g/plant (16.6%) in 2013 and 2014, respectively, compared to the S treatment. Applying gypsum increased soil EC, but decreased $SAR_{1:5}$ by 14 and 38% in 2013 and 2014, respectively. The application of compost and phosphate had a small effect on the growth of Chinese cabbage. These results suggest that applying gypsum in reclaimed tidal lands can reduce the sodicity of the soil and improve crop growth.

Effect of Sesbania Incorporation as Nitrogen Source on Growth and Yield of Whole Crop Barley and Reduction of N Fertilizer in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Bae, Hui-Su;Oh, Yang-Yeol;Lee, Sang-Hun;Kim, Yeong-Joo;Kim, Sun;Ryu, Jin-Hee;Jung, Kang-Ho;Lee, Choong-Geun;Kim, Jae-Hyeon;Kim, Yeong-Doo;Choi, Weon-Young;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.751-759
    • /
    • 2016
  • It is known that the poor soil fertility of newly reclaimed saline soils is due to the lack of organic matter and available mineral nutrients for crop production. The effect of green manuring with Sesbania aculeata in combination with five rates of urea-N treatments (N0. N25, N50, N75, N100) on the productivity of a subsequent whole-crop barley and the fertility of the reclaimed saline soil in Saemangeum was evaluated in the field during 2013-2014 growing season. Sesbania was grown during summer season (June to October). The amount of Sesbania incorporated was $16.2Mg\;ha^{-1}$. Sesbania contributed to $393kg\;N\;ha^{-1}$ to the soils when ploughed down and incorporated before whole-crop barley cultivated. The performances of whole-crop barley following sesbania incorporation were significantly affected by a combination of Sesbania manuring and different N rates. The N fertilizer equivalence without N fertilizer following Sesbania was 42.6% ($63.9kg\;N\;ha^{-1}$), compared with N100 ($150kg\;N\;ha^{-1}$) in fallow soils. The whole-crop barley yield responded to N fertilizer rates in both sesbania-amended and fallow soil. The yield response to nitrogen rates in fallow soil was linear (Y=0.0586X+3.3011, $R^2=0.9534$), whereas that in sesbania-amended soils was quadratic (Y= -0.001X2+0.1322X+5.7143, $R^2=0.9576$). The yield of whole-crop barley in sesbania-amended with increasing N rates was increased up to SN75 (115 kgN) $10.3Mg\;ha^{-1}$. Apparent N recovery (ANR) of whole-crop barely showed decreased with sesbania plus increasing rates of N fertilizer. Despite higher yield with sesbania manuring plus increasing N rates, the contributions of N from Sesbania with increasing N rates to whole-crop barley were decreased, whereas those from fertilizer increment due to excessively mineralized Nitrogen. Considering yield, ANR, N contribution from Sesbania and nitrogen fertilizer, the optimum N rate was N50 rate following sesbania incorporation.