• Title/Summary/Keyword: Recirculation system

Search Result 419, Processing Time 0.03 seconds

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Effect of aerobically treated manure on odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.308-316
    • /
    • 2022
  • Objective: This study was conducted to determine reduction of various odorous materials from a swine farm equipped with a continuous pit recirculation system (CPRS) with aerobically treated liquid manure. Methods: The CPRS is used in swine farms in South Korea, primarily to improve air quality in pig houses. In this study, CPRS consists of a manure aerobic treatment system and a fit recirculation system; the solid fraction is separated and composted, whereas the aerobically treated liquid fraction (290.0%±21.0% per day of total stored swine slurry) is continuously returned to the pit. Four confinement pig barns in three piggery farms were used; two were equipped with CPRS and the other two operated a slurry pit under the slatted floor. Results: All chemical contents of slurry pit manure in the control were greater than those of slurry pit manure in the CRPS treatment (p<0.05). Electrical conductivity and pH contents did not differ among treatments. The biological oxygen demand of the slurry pit treatment was greater than that of the other treatments (p<0.05). Total nitrogen, total phosphorus, and ammonia nitrogen contents of the slurry pit treatment were greater than those of other treatments (p<0.05). Odor intensity of the CPRS treatment was lower than that of the control at indoor, exhaust, and outside sampling points (p<0.05). The temperature and carbon dioxide of the CPRS treatment in the pig barn was significantly lower than those of control (p<0.05). All measured odorous material contents of the CPRS group were significantly lower than those of the control group (p<0.05). Conclusion: The CPRS application in pig farms is considered a good option as it continuously reduces the organic load of animal manure and lowers the average odorant concentration below the threshold of detecting odorous materials.

Improvement of a Flow Coefficient for the Recirculation Chill-down Flow in a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 재순환예냉 유로의 유량계수 개선)

  • Hong, Moongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2017
  • The improvement of a flow coefficient for the recirculation chill-down flow in a main oxidizer shut-off valve has been presented. The flow coefficient, which is mainly affected by the recirculation outlet port size and the configuration inside the valve, has been predicted with measured flow coefficient values. The comparison of experimentally measured flow coefficient with the predicted value shows the effect of valve inside configuration on the flow coefficient. Consequently, the flow coefficient is twice the previous value and about 75% of the pressure loss assigned to the main oxidizer shut-off valve can be used for additional pressure losses for other components in the recirculation chill-down system of a launch vehicle.

Seasonal atmospheric characteristics in a swine finishing barn equipped with a continuous pit recirculation system using aerobically treated manure

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1977-1985
    • /
    • 2022
  • Objective: This study was conducted to determine the seasonal characteristics of odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system (CPRS) using aerobically treated manure. Methods: The CPRS consists of an aerobic manure treatment process and a pit recirculation system, where the solid fraction is separated and composted. The aerated liquid fraction (290.0%±21.0% per day of total stored pig slurry) is continuously recirculated to the top of the slurry in the pit. Four confinement pig barns in three piggery farms were used: two were equipped with CPRS, and the other two operated a slurry pit under the slatted floor across all seasons. Results: The indoor, exhaust, and outside odor intensities were significantly lower in the CPRS group than in the control group (p<0.001). In the CPRS group, the odor intensity outside was significantly lower in the fall than in the other seasons (p = 0.015). In the indoor atmosphere, the temperature and CO2, NH3, and H2S contents of the CPRS group were significantly lower than those of the control group (p<0.05). In the CPRS group, indoor temperature did not significantly change in the spring, summer, and fall seasons and was significantly lower in the winter (p = 0.002). NH3, H2S, methyl mercaptan, dimethyl disulfide, trimethylamine, phenol, indole, and skatole levels were significantly lower in the CPRS group than in the control group (p<0.05). There were significant seasonal differences on the odorous material in both the control and CPRS groups (p<0.05), but the pattern was not clear across seasons. Conclusion: The CPRS can reduce the indoor temperature in the summer to a level similar to that in the spring and fall seasons. The CPRS with aerated liquid manure is expected to reduce and maintain malodorous emissions within acceptable limits in swine facilities.

Modeling of the Air Pollutant Recirculation using the MM5-CAMx on Ozone Episode in Greater Seoul Area during June, 2004 (MM5-CAMx를 이용한 대기오염물질의 재순환현상 모델링: 2004년 6월 수도권 오존오염 사례연구)

  • Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.297-310
    • /
    • 2007
  • Recent evidence has demonstrated that the pollutant recirculation can play an important role in leading to high ozone $(O_3)$ concentrations. In this study, the MM5-CAMx air quality modeling system was applied to simulate the pollutant recirculation and identify the transport of pollution during the high $O_3$ event (the maximum $O_3$ of 195 ppb) observed in the Greater Seoul Area (GSA) on $1{\sim}4$ June in 2004. The results showed a weak northeasterly synoptic wind during the night and early morning moved the air parcels containing the locally emitted urban pollution to the coast, which contributed to enhance $O_3$ formation in the southwest part of the GSA. As the sea breeze developed and started to penetrate inland in the late afternoon, the rapid build-up of $O_3$ concentration was found in the southwest coastal area due to the recirculation of the polluted air loaded with high level $O_3$. The simulated backward trajectories and observations at coastal sites confirmed the recirculation of pollutant with the late sea breeze is the dominant factor affecting the occurrence of high $O_3$ concentrations in the southwestern GSA.

Study on the Content Characteristics of Waste Containing Brominated Flame Retardant (브롬화난연제 함유 폐기물의 함량 특성 연구)

  • Yeon, Jin-Mo;Kim, Woo-Il;Hwang, Dong-Gun;Cho, Na-Hyeon;Kim, Ki-Heon;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.692-700
    • /
    • 2018
  • In this study, the results of PBDEs and HBCDs of the products and waste that contain BFRs such as domestic electronic products, automobiles and textile products were compared with international management standards, and their excess rates were calculated. Deca-BDE was detected among the PBDEs in TV rear cover plastics, car seats, automotive interior plastics, and automobile shredding residues of products and waste containing BFRs. The comparison with Basel Convention management standards (1,000 mg/kg) for PBDE-containing wastes (4 types in total) shows that the excess rate of all samples was less than 1.5%. The estimated excess rate compared to the EU and Basel convention management standards (1,000 mg/kg) for PBDEs (4 species + deca-BDE) and TV rear cover plastics was 37.5% (30 of 80 samples exceeded the standards). The estimated excess rate compared to the Basel convention management standards (1,000 mg/kg) for HBCD, building materials products and waste was 15.7% (17 of 108 samples exceeded the standards). In the case of PBDEs, it is necessary to remove only the rear cover of CRT TV among the electric and electronic products and treat it in the flame retardant treatment facility to improve the recycling collection system. In the case of HBCD, it is necessary to appropriately dispose of the recycled materials, heat insulation materials, TV plastics, and styrofoam in marine fishery among construction materials and restrict the use as recycled raw materials.

Exhaust Gas Recirculation/Water Injection Experimental Results for NOx Emission Reduction in Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.823-832
    • /
    • 2007
  • This paper presents the static characteristics of EGR-WI combined system. The water injection system was statically characterized by recording the engine exhaust outlet $NO_x$ emissions for comparison with baseline $NO_x$ emissions. Effects of the water injection system on CO and HC emissions and fuel consumption were examined. The research engine used for these experiments was a 103 kW turbocharged, intercooled, 2.5 L VM Motori CIDI engine equipped with a cooled EGR system. Water injection in the intake system demonstrated the potential for significant reductions in engine outlet $NO_x$ emissions. The system has reduced engine outlet $NO_x$ emissions by 40-50%, but caused significant increases in CO and HC emissions, particularly at low loads. Fuel consumption effects were minimal.

Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation (재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화)

  • Jeong, Jong Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.411-419
    • /
    • 2016
  • The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.

Experimental Evaluation of Intermittent Leachate Recirculation Anaerobic System to digest Source from Separated Food Waste (단속식 침출수 순환형 음식물류 폐기물 혐기성 소화 공법에 대한 실험적 특성 파악)

  • Lee, Je-Seung;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.57-66
    • /
    • 2014
  • The leachate recirculation anaerobic digestion system has the advantage of stable methane gas generation compared with existing one phase systems. In this study, an anaerobic digestion system fed with source separated food waste from school cafeteria was studied with different food waste/inoculum anaerobic sludge volume ratios (8:2, 3:7, 2:8). From this study, leachate recirculation anaerobic reactor with food waste/inoculum anaerobic sludge volume ratio of 2:8 that is 9 gVS/L of OLR(Organic Loading Rate) had the highest gas production. Also this anaerobic reactor showed daily decrease of H2S and NH3 contents in produced gas. Average biogas yield was 1.395 m3 Biogas/kg VS added. Other anaerobic reactors with food waste/inoculum anaerobic sludge volume ratio of 8:2 and 3:7 stopped methane gas production.