• 제목/요약/키워드: Recirculation system

검색결과 421건 처리시간 0.022초

해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석 (Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil)

  • 김장권;오석형;김종범;정상옥
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

모렐 식을 갖는 풍동수축부의 내부유동장 특성에 대한 수치해석 (Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel Contractions with Morel's Equation)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.11-17
    • /
    • 2018
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the internal flow fields characteristics of wind tunnel contractions made by Morel's curve equations. The turbulence model used in this study is a realizable ${\kappa}-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, when the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at $Z_m=300$, 400 mm, but the smallest at $Z_m=700mm$. The maximum turbulence intensity in the test section is about 2.5% when calculated by the homogeneous flow, so it is improved by about 75% compared to the 10% turbulence intensity at the inlet of the plenum chamber due to the contraction.

저압방식을 적용한 대형과급기관의 배기가스에 관한 EGR효과 (EGR Effects on Exhaust Gas of Heavy-Duty Turbo Charge Engine with Low Pressure Route System)

  • 오용석
    • 한국산학기술학회논문지
    • /
    • 제3권1호
    • /
    • pp.58-62
    • /
    • 2002
  • 본 연구는 기관의 성능과 배출가스의 ECR 효과을 대한 것으로 기관은 6실린더 11리터의 대형터보디젤기관이며 ECR 방식은 저압루트시스템을 적용하였다. EGR 작동방식은 기계시이며 터빈 출구로부터 압축기 입구로 재순환시키는 방식이다. 또한 실험은 기관회전수와 부하별로 변경시켰으며 ECR율은 4%와 8%로 고정하여 실험하였고 그 결과를 기존 기관의 성능 및 배출가스결과와 비교 분석하였다. 따라서 본 연구의 목적은 대형터보디젤기관에 폭넓은 작동범위에서 ECR에 의한 기관 및 배출가스 성능에 미치는 영향을 고찰하고자 한다.

  • PDF

승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구 (Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines)

  • 박인석;홍승우;선우명호
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

BLDC 모터 내 열.유동 해석 (Numerical investigation of thermo-flow characteristics in BLDC motor)

  • 김민수;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2540-2545
    • /
    • 2007
  • A computational study of BLDC motor is presented to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet and the inflow rates are predicted more at the front-side inlet than at the rear-side, which can be ascribed to the different pressure distribution. Recirculation zone appears in the tiny interfaces between windings, however, showing the enhanced cooling performance due to the higher velocity distribution near the rotor wall. In contrast, flow separation and incline angle of bearing groove, and relatively slower velocity distribution cause poor cooling performance and therefore the redesign of the bearing groove is significantly required.

  • PDF

Pilot 규모의 열분해 용융 소각 시스템에서의 열분해 및 연소 특성 연구 (A Study on the Pyrolysis and Combustion Characteristics of Solid Waste in a Pilot scale Pyrolysis Melting Incinerator)

  • 류태우;양원;박주원;김봉근;이기방;김희열;박상신;전금하
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-174
    • /
    • 2006
  • A pilot scale (200kg/hr) pyrolysis melting incineration system is designed and constructed in Korea Institute of Industrial Technology. The incineration process is composed of pyrolysis, gas combustion, ash melting, gas stabilization, waste heating boiler, and bag filter. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. Especially, a pyrolysis is very important process in that it is a way of energy recirculation and minimizing the waste products. This paper presents major results of the most efficient operating conditions in a pilot scale pyrolysis melting incinerator.

  • PDF

펌프 장기손상 메커니즘 규명을 위한 진동영향 평가 (The vibration impact assessment for long-term damage mechanism of a pump)

  • 김태현;김형석;김동건;김원태;한병섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.441-445
    • /
    • 2009
  • The most of the goals of pump designers and users are efficient operation and productivity. But the safety-grade pumps in nuclear power plants are needed to operate continuously for an essential condition of system operation. Also, most of the rules and regulatory standards that have been prepared for nuclear pumps are dedicated to achieve public safety. The study examined pump vibration in a pump outlet flow and distinguished the regions of pump vibration frequency cause by cavitation and recirculation. The study made a counterproposal in determination of pump outlet flow so that the discharge flow will be able to minimize the long-term damage of the pump.

  • PDF

디젤엔진 배기가스의 저감에 관한 연구 (A Study on the Reduction of Diesel-Engine Emissions)

  • 허윤복;정순석;김광수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

BLDC 모터의 열적 성능에 대한 설계 인자의 영향 (Effects of Design Parameters on the Thermal Performance of a Brushless DC Motor)

  • 김민수;이관수
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.141-148
    • /
    • 2008
  • A numerical simulation of brushless DC motor is performed to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet. Recirculation zone exists in the tiny interfaces between windings. The flow separation causes poor cooling performance in bearing part and therefore the redesign of the bearing groove is required. The design parameters such as the inlet location, geometry and bearing groove threshold angle have been selected in the present simulation. As the inlet location moves inward in the radial direction, total incoming flow rate and heat transfer rate are increased. Total incoming flow rate is increased with increasing the inlet inner length. The effect of the bearing groove threshold angle on the thermal performance is less than that of other design parameters.

다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정 (PTV velocity field measurements of flow around a triangular prism located behind a porous fence)

  • 김형범;이상준
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.